A one-soliton solution of the ZK(m,n,k) equation with generalized evolution and time-dependent coefficients

[1]  Anjan Biswas,et al.  Bright and dark solitons of the generalized nonlinear Schrödinger’s equation , 2010 .

[2]  Yi-Tian Gao,et al.  N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation , 2010 .

[3]  Abdul-Majid Wazwaz,et al.  Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations , 2010 .

[4]  Anjan Biswas,et al.  Dark optical solitons in power law media with time-dependent coefficients , 2009 .

[5]  Anjan Biswas,et al.  1-Soliton solution of the B(m,n) equation with generalized evolution , 2009 .

[6]  Abdul-Majid Wazwaz,et al.  Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation , 2009, Appl. Math. Comput..

[7]  Abdul-Majid Wazwaz,et al.  BRIGHT AND DARK SOLITON SOLUTIONS FOR A K (M, N) EQUATION WITH T-DEPENDENT COEFFICIENTS , 2009 .

[8]  Anjan Biswas,et al.  Solitary wave solution for the generalized Kawahara equation , 2009, Appl. Math. Lett..

[9]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[10]  Anjan Biswas,et al.  1-soliton solution of (1 + 2)-dimensional nonlinear Schrödinger's equation in dual-power law media , 2008 .

[11]  D. Ganji,et al.  Homotopy Perturbation Method and Variational Iteration Method for Solving Zakharov-Kuznetsov Equation , 2008 .

[12]  Anjan Biswas,et al.  1-soliton solution of the K(m,n) equation with generalized evolution , 2008 .

[13]  Xiangzheng Li,et al.  A sub-ODE method for finding exact solutions of a generalized KdV–mKdV equation with high-order nonlinear terms , 2007 .

[14]  Abdul-Majid Wazwaz,et al.  New solitary wave solutions to the modified Kawahara equation , 2007 .

[15]  M. A. Abdou,et al.  New solitons and periodic wave solutions for nonlinear evolution equations , 2006 .

[16]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[17]  S. L. Palacios,et al.  Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  A. Serga,et al.  PARAMETRIC INTERACTION OF DIPOLAR SPIN WAVE SOLITONS WITH LOCALIZED ELECTROMAGNETIC PUMPING , 1997 .

[19]  C. K. Chui,et al.  A novel approach to solving the nonlinear Schrodinger equation by the coupled amplitude-phase formulation , 1995 .

[20]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .