Algorithmic complexity and entanglement of quantum states.

We define the algorithmic complexity of a quantum state relative to a given precision parameter, and give upper bounds for various examples of states. We also establish a connection between the entanglement of a quantum state and its algorithmic complexity.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Niels Bohr,et al.  Atomic Physics and Human Knowledge , 1958 .

[3]  Dale Riepe,et al.  Atomic Physics and Human Knowledge. , 1960 .

[4]  G. Chaitin Randomness and Mathematical Proof , 1975 .

[5]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[6]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[7]  Schack,et al.  Information and entropy in the baker's map. , 1992, Physical review letters.

[8]  Caves Information and entropy. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[10]  Peter Gacs,et al.  Quantum algorithmic entropy , 2000 .

[11]  Paul M. B. Vitányi,et al.  Quantum Kolmogorov complexity based on classical descriptions , 2001, IEEE Trans. Inf. Theory.

[12]  Sophie Laplante,et al.  Quantum Kolmogorov Complexity , 2001, J. Comput. Syst. Sci..

[13]  V. Akila,et al.  Information , 2001, The Lancet.

[14]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[15]  J. Vartiainen,et al.  Efficient decomposition of quantum gates. , 2003, Physical review letters.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.