The Infinite-Dimensional Optimal Filtering Problem with Mobile and Stationary Sensor Networks

In this article, we introduce a framework to address filtering and smoothing with mobile sensor networks for distributed parameter systems. The main problem is formulated as the minimization of a functional involving the trace of the solution of a Riccati integral equation with constraints given by the trajectory of the sensor network. We prove existence and develop approximation of the solution to the Riccati equation in certain trace-class spaces. We also consider the corresponding optimization problem. Finally, we employ a Galerkin approximation scheme and implement a descent algorithm to compute optimal trajectories of the sensor network. Numerical examples are given for both stationary and moving sensor networks.

[1]  Jürgen Voigt,et al.  On the convex compactness property for the strong operator topology , 1992 .

[2]  Alexander Y. Khapalov,et al.  $L^\infty$-Exact Observability of the Heat Equationwith Scanning Pointwise Sensor , 1994 .

[3]  Alain Bensoussan,et al.  Optimization of sensors' location in a distributed filtering problem , 1972 .

[4]  E. M. Cliff,et al.  A distributed parameter control approach to optimal filtering and smoothing with mobile sensor networks , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[5]  Sabine Fenstermacher,et al.  Estimation Techniques For Distributed Parameter Systems , 2016 .

[6]  Kirsten Morris LQ-optimal actuator location and norm convergence of Riccati operators , 2008, 2008 47th IEEE Conference on Decision and Control.

[7]  Tom Fleischer,et al.  Applied Functional Analysis , 2016 .

[8]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[9]  Petra Koenig,et al.  Dynamics Of Evolutionary Equations , 2016 .

[10]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[11]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[12]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[13]  John A. Burns,et al.  Solutions and Approximations to the Riccati Integral Equation with Values in a Space of Compact Operators , 2015, SIAM J. Control. Optim..

[14]  R. Curtain A Survey of Infinite-Dimensional Filtering , 1975 .

[15]  B. Simon Trace ideals and their applications , 1979 .

[16]  I. G. Rosen On Hilbert-Schmidt norm convergence of Galerkin approximation for operator Riccati equations , 1988 .

[17]  Y. Sakawa Controllability for Partial Differential Equations of Parabolic Type , 1974 .

[18]  John A. Burns,et al.  Optimal sensor location for robust control of distributed parameter systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Szymon Dolecki,et al.  Observability for the one-dimensional heat equation , 1973 .

[20]  C. Rautenberg A Distributed Parameter Approach to Optimal Filtering and Estimation with Mobile Sensor Networks , 2010 .

[21]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[22]  A. Khapalov,et al.  Controllability of the wave equation with moving point control , 1995 .

[23]  Karl Kunisch,et al.  The linear regulator problem for parabolic systems , 1984 .

[24]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[25]  J. S. Gibson,et al.  The Riccati Integral Equations for Optimal Control Problems on Hilbert Spaces , 1979 .

[26]  A. Yu. Khapalov,et al.  Observability of hyperbolic systems with interior moving sensors , 1993 .

[27]  J. Burns,et al.  A Reduced Basis Approach to the Design of Low-Order Feedback Controllers for Nonlinear Continuous Systems , 1998 .

[28]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[29]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[30]  Alfredo Germani,et al.  Approximation of the algebraic Riccati equation in the Hilbert space of Hilbert-Schmidt operators , 1993 .

[31]  Y. Sakawa Observability and Related Problems for Partial Differential Equations of Parabolic Type , 1975 .

[32]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[33]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[34]  Kazufumi Ito,et al.  Strong convergence and convergence rates of approximating solutions for algebraic riccati equations in Hilbert spaces , 1987 .

[35]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[36]  A. Yu. Khapalov Exact Observability of the Time-Varying Hyperbolic Equation with Finitely Many Moving Internal Observations , 1995 .

[37]  J. Seinfeld,et al.  Optimal location of measurements for distributed parameter estimation , 1978 .

[38]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[39]  A. Yu. Khapalov Optimal measurement trajectories for distributed parameter systems , 1992 .

[40]  J. Ringrose Compact non-self-adjoint operators , 1971 .

[41]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[42]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems (Systems & Control: Foundations & Applications) , 2006 .

[43]  A. Friedman Foundations of modern analysis , 1970 .

[44]  Alfredo Germani,et al.  Galerkin approximation of optimal linear filtering of infinite-dimensional linear systems , 1988 .

[45]  F. Smithies Linear Operators , 2019, Nature.

[46]  Alain Bensoussan,et al.  Filtrage optimal des systèmes linéaires , 1971 .

[47]  J. A. Burns,et al.  Regularity of feedback opertors for boundary control of thermal processes , 1994 .

[48]  S. Omatu,et al.  Optimal sensor location problem for a linear distributed parameter system , 1978 .

[49]  R. Curtain Infinite-Dimensional Filtering , 1975 .

[50]  Acce-Man Ftor,et al.  A Note on the Regularity of Solutions of Infinite Dimensional Riccati Equations , .

[51]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[52]  R. D. Richtmyer,et al.  Linear Operators in a Hilbert Space , 1978 .

[53]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.