Spectral Modeling of Star-forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High-Redshift Galaxies

The chemical composition of high-redshift galaxies is an important property that gives clues to their past history and future evolution and yet is difficult to measure with current techniques. In this paper we investigate new metallicity indicators based on the strengths of stellar photospheric features at rest-frame ultraviolet wavelengths. By combining the evolutionary spectral synthesis code Starburst99 with the output from the non-LTE model atmosphere code WM-basic, we have developed a code that can model the integrated ultraviolet stellar spectra of star-forming regions at metallicities between 1/20 and twice solar. We use our models to explore a number of spectral regions that are sensitive to metallicity and clean of other spectral features. The most promising metallicity indicator is an absorption feature between 1935 and 2020 Å, which arises from the blending of numerous Fe III transitions. We compare our model spectra with observations of two well-studied high-redshift star-forming galaxies, MS 1512-cB58 (a Lyman break galaxy at zem = 2.7276) and Q1307-BM1163 (a UV-bright galaxy at zem = 1.411). The profiles of the photospheric absorption features observed in these galaxies are well reproduced by the models. In addition, the metallicities inferred from their equivalent widths are in good agreement with previous determinations based on interstellar absorption and nebular emission lines. Our new technique appears to be a promising alternative, or complement, to established methods, which have only a limited applicability at high redshifts.

[1]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[2]  C. Steidel,et al.  The Kinematics of Morphologically Selected z ~ 2 Galaxies in the GOODS-North Field , 2004, astro-ph/0404235.

[3]  W. Keel,et al.  Far-Ultraviolet Spectroscopy of Star-forming Regions in Nearby Galaxies: Stellar Populations and Abundance Indicators , 2004, astro-ph/0403499.

[4]  G. Vladilo The early build-up of dust in galaxies: A study of damped Ly α systems , 2004, astro-ph/0403237.

[5]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.

[6]  J. Puls,et al.  Stellar and wind parameters of Galactic O-stars - The influence of line-blocking/blanketing , 2004 .

[7]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[8]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[9]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[10]  J. Puls,et al.  Bright OB stars in the Galaxy I. Mass-loss and wind-momentum rates of O-type stars: A pure Hα analysis accounting for line-blanketing , 2004 .

[11]  I. Hook,et al.  The Gemini Deep Deep Survey. II. Metals in Star-forming Galaxies at Redshift 1.3 < z < 2 , 2003, astro-ph/0310437.

[12]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[13]  F. Bresolin,et al.  The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale , 2003, astro-ph/0303452.

[14]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[15]  C. Maraston,et al.  The impact of α/Fe enhanced stellar evolutionary tracks on the ages of elliptical galaxies , 2003, astro-ph/0302063.

[16]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[17]  Garching,et al.  Stellar population models of Lick indices with variable element abundance ratios , 2002, astro-ph/0209250.

[18]  C. Steidel,et al.  Massive star populations in Lyman break galaxies , 2003 .

[19]  K. Cook,et al.  Line-driven winds , ionizing fluxes and UV-spectra of hot stars at extremely low metallicity . I . Very massive O-stars , 2003 .

[20]  C. Leitherer A decade of Hubble Space Telescope science: Starburst galaxies observed with the Hubble Space Telescope , 2003 .

[21]  L. Bianchi,et al.  The Effective Temperatures of Mid-O Stars , 2002 .

[22]  C. Evans,et al.  Revised Stellar Temperatures for Magellanic Cloud O Supergiants from Far Ultraviolet Spectroscopic Explorer and Very Large Telescope UV-Visual Echelle Spectrograph Spectroscopy , 2002 .

[23]  Universitatssternwarte Munchen,et al.  Evidence for chemical evolution in the spectra of high redshift galaxies , 2002, astro-ph/0208231.

[24]  Linda J. Smith,et al.  Realistic ionizing fluxes for young stellar populations from 0.05 to 2 Z , 2002, astro-ph/0207554.

[25]  C. Leitherer,et al.  Ultraviolet Spectra of Star-forming Galaxies with Time-dependent Dust Obscuration , 2002 .

[26]  C. Prieto,et al.  A Reappraisal of the Solar Photospheric C/O Ratio , 2002, astro-ph/0206089.

[27]  R. Kudritzki Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.

[28]  Toulouse,et al.  On the effective temperature scale of O stars , 2001, astro-ph/0111233.

[29]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[30]  A. Pauldrach,et al.  Radiation-driven winds of hot luminous stars - XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres , 2001 .

[31]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[32]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[33]  C. Leitherer,et al.  Ultraviolet Line Spectra of Metal-poor Star-forming Galaxies , 2000, astro-ph/0012358.

[34]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[35]  H. Kobulnicky,et al.  Near-Infrared Spectroscopy of Two Galaxies at z = 2.3 and z = 2.9: New Probes of Chemical and Dynamical Evolution at High Redshift , 2000, astro-ph/0008242.

[36]  J. Graham,et al.  The Rest-Frame Optical Spectrum of MS 1512–cB58 , 2000, The Astrophysical journal.

[37]  C. Leitherer,et al.  B Stars as a Diagnostic of Star Formation at Low and High Redshift , 1999, astro-ph/9909513.

[38]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[39]  Doug L. Miller,et al.  Constraints on the Evolution of Massive Stars through Spectral Analysis. I. The WC5 Star HD 165763 , 1999 .

[40]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[41]  C. Esteban,et al.  Chemical composition of the Orion nebula derived from echelle spectrophotometry , 1998 .

[42]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[43]  C. Leitherer,et al.  The Ultraviolet Spectroscopic Properties of Local Starbursts: Implications at High Redshift , 1998, astro-ph/9803185.

[44]  R. Carlberg,et al.  A Proto-Galaxy Candidate at Z = 2.7 , 1996, astro-ph/9602121.

[45]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[46]  R. Kudritzki,et al.  THE PHYSICS OF MASSIVE OB STARS IN DIFFERENT PARENT GALAXIES. I. ULTRAVIOLET AND OPTICAL SPECTRAL MORPHOLOGY IN THE MAGELLANIC CLOUDS , 1995 .

[47]  Claus Leitherer,et al.  Deposition of Mass, Momentum, and Energy by Massive Stars into the Interstellar Medium , 1992 .

[48]  David Burstein,et al.  Old stellar populations. II. an analysis of K-giant spectra. , 1985 .

[49]  David Burstein,et al.  Old stellar populations. I. A spectroscopic comparison of galactic globular clusters, M 31 globular clusters, and elliptical galaxies. , 1984 .

[50]  R. Wilson,et al.  Interstellar extinction in the Large Magellanic Cloud , 1980, Nature.

[51]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[52]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[53]  K. Nandy,et al.  A Broad Absorption Region in the Ultraviolet Spectra of Early-Type Stars , 1974 .

[54]  E. Salpeter The Luminosity function and stellar evolution , 1955 .