A Markov-Monte Carlo Simulation Model to Support Urban Planning Decisions: A Case Study for Medellín, Colombia

The identification of properties and land destinations are key factors in urban planning decisions, especially in rapid-growing urbanized cities. This information is vital for cadaster matters, property taxes calculations, and therefore for the financial sustainability of a city. In this work we present a Markov-Monte Carlo simulation model to predict changes in land destinations. First, a Markov chain is established to identify the transition finite-state matrix of property destinations, and then a Monte Carlo simulation model is used to predict the changes. We present a case study for the city of Medellin, Colombia, using historical information from the cadaster office from 2004 to 2016. Results obtained allow identifying the urban areas with the larger number of changes. Moreover, these results provide support for urban planning decisions related to workforce sizing and visits sequences to the identified areas.

[1]  Hongwei Huang,et al.  Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation , 2012 .

[2]  Charles J. Geyer,et al.  Markov Chain Monte Carlo Lecture Notes , 2005 .

[3]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[4]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[5]  Nina Schwarz,et al.  Modelling the impacts of urban upgrading on population dynamics , 2016, Environ. Model. Softw..

[6]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[7]  Herbert K. H. Lee Bayesian Methods: A Social and Behavioral Sciences Approach , 2008 .

[8]  Wann-Ming Wey,et al.  New Urbanism and Smart Growth: Toward achieving a smart National Taipei University District , 2014 .

[9]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[10]  Jarkko Venna,et al.  Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations , 2009, Comput. Stat. Data Anal..

[11]  Adrian E. Raftery,et al.  Three Short Papers on Sampling-Based Inference: 1. How Many Iterations in the Gibbs Sampler? 2. Model Determination. 3. Spatial Statistics , 1991 .

[12]  David K. E. Green,et al.  Efficient Markov Chain Monte Carlo for combined Subset Simulation and nonlinear finite element analysis , 2017 .

[13]  Mohsen Ahadnejad Reveshty The Assessment and Predicting of Land Use Changes to Urban Area Using Multi-Temporal Satellite Imagery and GIS: A Case Study on Zanjan, IRAN (1984-2011) , 2011, J. Geogr. Inf. Syst..

[14]  Anas N. Al-Rabadi,et al.  A comparison of modified reconstructability analysis and Ashenhurst‐Curtis decomposition of Boolean functions , 2004 .

[15]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[16]  S. Magnussen A Markov Chain Monte Carlo approach to joint simulation of regional areas burned annually in Canadian forest fires , 2009 .

[17]  Michael R. Muller,et al.  A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada , 1994, Landscape Ecology.

[18]  Hai Liu,et al.  A Markov-Kalman Model of Land-Use Change Prediction in XiuHe Basin, China , 2013, GRMSE.

[19]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[20]  Sasha Tsenkova,et al.  New Urbanism and Smart Growth Movements , 2012 .

[21]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[22]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .