Communication complexity in number-conserving and monotone cellular automata

One third of the elementary cellular automata (CAs) are either number-conserving (NCCAs) or monotone (increasing or decreasing). In this paper we prove that, for all of them, we can find linear or constant communication protocols for the prediction problem. In other words, we are able to give a succinct description for their dynamics. This is not necessarily true for general NCCAs. In fact, we also show how to explicitly construct, from any CA, a new NCCA which preserves the original communication complexity.

[1]  Bart De Moor,et al.  Cellular automata models of road traffic , 2005, physics/0509082.

[2]  A. Razborov Communication Complexity , 2011 .

[3]  Eric Goles Ch.,et al.  Communications in cellular automata , 2008, CSP.

[4]  Eric Goles Ch.,et al.  Communication complexity and intrinsic universality in cellular automata , 2011, Theor. Comput. Sci..

[5]  Henryk Fuks,et al.  A class of cellular automata equivalent to deterministic particle systems , 2002, nlin/0207047.

[6]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[7]  Eric Goles Ch.,et al.  Understanding a Non-trivial Cellular Automaton by Finding Its Simplest Underlying Communication Protocol , 2008, ISAAC.

[8]  Anna T. Lawniczak,et al.  Hydrodynamic Limits and Related Topics , 2000 .

[9]  Siamak Taati,et al.  Conservation Laws in Cellular Automata , 2009, Handbook of Natural Computing.

[10]  Ivan Rapaport,et al.  Cellular automata and communication complexity , 2002, Theor. Comput. Sci..

[11]  Andrés Moreira,et al.  Universality and decidability of number-conserving cellular automata , 2003, Theor. Comput. Sci..

[12]  Ivan Rapaport,et al.  Traced communication complexity of cellular automata , 2011, Theor. Comput. Sci..

[13]  Eric Goles Ch.,et al.  On conservative and monotone one-dimensional cellular automata and their particle representation , 2004, Theor. Comput. Sci..

[14]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[15]  H. Fuks,et al.  Cellular automaton rules conserving the number of active sites , 1997, adap-org/9712003.

[16]  Nino Boccara,et al.  Number-conserving cellular automaton rules , 1999, Fundam. Informaticae.