Calculations of Dark Current in Interband Cascade Type-II Infrared InAs/GaSb Superlattice Detector
暂无分享,去创建一个
[1] Alexander Soibel,et al. Dark current analysis of InAs/GaSb superlattices at low temperatures , 2009 .
[2] Elena Plis,et al. Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors , 2014 .
[3] Piotr Martyniuk,et al. MWIR barrier detectors versus HgCdTe photodiodes , 2015 .
[4] A. Asgari,et al. Vertical Transport in InAs/GaSb Superlattice at Low Temperatures , 2015 .
[5] C. Cervera,et al. Electronic properties of InAs/GaSb superlattice detectors to evaluate high-temperature operation , 2010, OPTO.
[6] B. J. Sealy. Review of III-V semiconductor materials and devices , 1987 .
[7] Chennupati Jagadish,et al. III-V compound SC for optoelectronic devices , 2009 .
[8] Antoni Rogalski,et al. HgCdTe infrared detector material: history, status and outlook , 2005 .
[9] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors , 1967 .
[10] Stephen Myers,et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice , 2012 .
[11] Man-Ching Wong,et al. 57 , 2015, Tao te Ching.
[12] Andrew G. Glen,et al. APPL , 2001 .
[13] J. P. Perez,et al. Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization , 2009 .
[14] Rui Q. Yang,et al. Interband-cascade infrared photodetectors with superlattice absorbers , 2010 .
[15] Zach DeVito,et al. Opt , 2017 .
[16] Rui Q. Yang,et al. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors , 2013 .