Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

[1]  C. Scheuerlein,et al.  Variation of the Critical Properties of Alloyed Nb-Sn Wires After Proton Irradiation at 65 MeV and 24 GeV , 2015, IEEE Transactions on Applied Superconductivity.

[2]  Amalia Ballarino,et al.  Electro-mechanical properties of PIT Nb3Sn wires under transverse stress: experimental results and FEM analysis , 2015 .

[3]  C. Scheuerlein,et al.  Elastic Anisotropy in Multifilament $\hbox{Nb}_{3}\hbox{Sn}$ Superconducting Wires , 2015, IEEE Transactions on Applied Superconductivity.

[4]  Xiaojing Zheng,et al.  Multi-contact behaviors among Nb3Sn strands associated with load cycles in a CS1 cable cross section , 2015 .

[5]  Xiaojing Zheng,et al.  Numerical Simulation of the Mechanical Properties of the $\hbox{Nb}_{3}\hbox{Sn}$ CICCs Under Transverse Cyclic Loads , 2014, IEEE Transactions on Applied Superconductivity.

[6]  Youhe Zhou,et al.  Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation , 2013 .

[7]  N. Mitchell,et al.  The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands , 2013 .

[8]  Youhe Zhou,et al.  A Structural Mechanics Model for the 2-D Mechanical Characteristics of ITER Cable-In-Conduit Conductor Cable Under Transverse Loads , 2013, IEEE Transactions on Applied Superconductivity.

[9]  Youhe Zhou,et al.  Transport current distribution on Nb3Sn strand for TARSIS , 2013 .

[10]  D. Boso A simple and effective approach for thermo-mechanical modelling of composite superconducting wires , 2013 .

[11]  Youhe Zhou,et al.  Theoretical Modeling for the Effect of Twisting on the Properties of Multifilamentary $\hbox{Nb}_{3}\hbox{Sn}$ Superconducting Strand , 2013, IEEE Transactions on Applied Superconductivity.

[12]  Youngning Zhou,et al.  Contact mechanical characteristics of Nb3Sn strands under transverse electromagnetic loads in the CICC cross-section , 2012 .

[13]  H. Krooshoop,et al.  Magnetization measurements on ITER Nb3Sn CICC and strands subjected to irreversible strain degradation , 2012 .

[14]  H. Bajas,et al.  Approach to Heterogeneous Strain Distribution in Cable-In-Conduit Conductors Through Finite Element Simulation , 2012, IEEE Transactions on Applied Superconductivity.

[15]  D. Larbalestier,et al.  Study of Filament Cracking Under Uniaxial Repeated Loading for ITER TF Strands , 2012, IEEE Transactions on Applied Superconductivity.

[16]  H. Bajas,et al.  Finite element modelling of cable-in-conduit conductors , 2012 .

[17]  Arnaud Devred,et al.  Modeling of the electro-mechanical behavior of ITER Nb3Sn cable in conduit conductors , 2012 .

[18]  B. Schrefler,et al.  Generalized self‐consistent like method for mechanical degradation of fibrous composites , 2011 .

[19]  Xiaojing Zheng,et al.  Initial damage influence of stiffness reduction for bronze route Nb3Sn strands , 2011 .

[20]  Yuehua Wu,et al.  A novel numerical mechanical model for the stress–strain distribution in superconducting cable-in-conduit conductors , 2011 .

[21]  D Ciazynski,et al.  Mechanical-Electrical Modeling of Stretching Experiment on 45 ${\rm Nb}_{3}{\rm Sn}$ Strands CICCs , 2011, IEEE Transactions on Applied Superconductivity.

[22]  T. Hemmi,et al.  Analytical model of the critical current of a bent Nb3Sn strand , 2011 .

[23]  J. Ekin,et al.  Unified scaling law for flux pinning in practical superconductors: I. Separability postulate, raw scaling data and parameterization at moderate strains , 2010 .

[24]  D Ciazynski,et al.  Numerical Simulation of the Mechanical Behavior of ITER Cable-In-Conduit Conductors , 2010, IEEE Transactions on Applied Superconductivity.

[25]  Y. Zhai Electro-mechanical modeling of Nb3Sn CICC performance degradation due to strand bending and inter-filament current transfer , 2010 .

[26]  M. Bird,et al.  Florida electro-mechanical cable model of Nb3Sn CICCs for high-field magnet design , 2008 .

[27]  N Mitchell,et al.  Comparison between predictions and measurements of the superconducting performance of Nb3Sn cable in conduit conductors with transverse load degradation , 2008 .

[28]  A. Nijhuis,et al.  Spatial Periodic Bending and Critical Current of Bronze and PIT ${\rm Nb}_{3}{\rm Sn}$ Strands in a Steel Tube , 2007, IEEE Transactions on Applied Superconductivity.

[29]  Guozheng Kang,et al.  Constitutive Modeling for Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel , 2007 .

[30]  G. Kang,et al.  Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel at High Temperatures , 2007 .

[31]  W. Markiewicz Invariant temperature and field strain functions for Nb3Sn composite superconductors , 2006 .

[32]  Arend Nijhuis,et al.  Critical current and strand stiffness of three types of Nb3Sn strand subjected to spatial periodic bending , 2006 .

[33]  Arend Nijhuis,et al.  Spatial periodic contact stress and critical current of a Nb3Sn strand measured in TARSIS , 2006 .

[34]  Y. Ilyin,et al.  Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness , 2006, cond-mat/0607345.

[35]  Bernhard A. Schrefler,et al.  Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand , 2006 .

[36]  Y. Nunoya,et al.  A New Model to Simulate Critical Current Degradation of a Large CICC by Taking Into Account Strand Bending , 2006, IEEE Transactions on Applied Superconductivity.

[37]  A. Nijhuis,et al.  Axial Tensile Stress-Strain Characterization of a 36$rm Nb_3rm Sn$Strands Cable , 2006, IEEE Transactions on Applied Superconductivity.

[38]  G. Kang,et al.  Time-dependent ratchetting experiments of SS304 stainless steel , 2006 .

[39]  N Mitchell,et al.  Assessment of conductor degradation in the ITER CS insert coil and implications for the ITER conductors , 2006 .

[40]  N Mitchell,et al.  Operating strain effects in Nb3Sn cable-in-conduit conductors , 2005 .

[41]  D. Hampshire,et al.  The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires , 2005 .

[42]  N. Mitchell,et al.  Coupled mechanical–electromagnetic–thermal–hydraulic effects in Nb3Sn cable-in-conduit conductors for ITER , 2005 .

[43]  Arend Nijhuis,et al.  Axial tensile stress–strain characterization of ITER model coil type Nb3Sn strands in TARSIS , 2005 .

[44]  N. Mitchell Finite element simulations of elasto-plastic processes in Nb3Sn strands , 2005 .

[45]  Bernard Schrefler,et al.  A multilevel homogenised model for superconducting strand thermomechanics , 2005 .

[46]  A. Nijhuis,et al.  Performance of an ITER CS1 model coil conductor under transverse cyclic loading up to 40,000 cycles , 2004, IEEE Transactions on Applied Superconductivity.

[47]  N Mitchell,et al.  Summary, assessment and implications of the ITER Model Coil test results , 2003 .

[48]  N. Mitchell Analysis of the effect of Nb3Sn strand bending on CICC superconductor performance , 2002 .

[49]  N. Mitchell,et al.  Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading. III. Mechanical properties , 1999, IEEE Transactions on Applied Superconductivity.

[50]  S. J. Zhou,et al.  INFLUENCE OF PROCESSING DAMAGE ON PERFORMANCE OF FIBER-REINFORCED COMPOSITES , 1995 .

[51]  C. Koch,et al.  A prediction of the stress state in Nb3Sn superconducting composites , 1980 .

[52]  J. Ekin Current transfer in multifilamentary superconductors. I. Theory , 1978 .

[53]  J. Ho,et al.  Current transfer in multifilamentary superconductors. II. Experimental results , 1978 .