Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz‐type matrices

The sensitivity of eigenvalues of structured matrices under general or structured perturbations of the matrix entries has been thoroughly studied in the literature. Error bounds are available and the pseudospectrum can be computed to gain insight. Few investigations have focused on analyzing the sensitivity of eigenvectors under general or structured perturbations. The present paper discusses this sensitivity for tridiagonal Toeplitz and Toeplitz-type matrices.

[1]  Gene H. Golub,et al.  On Fourier-Toeplitz methods for separable elliptic problems , 1974 .

[2]  Lothar Reichel,et al.  Computing unstructured and structured polynomial pseudospectrum approximations , 2017, J. Comput. Appl. Math..

[3]  A. Böttcher,et al.  Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices , 2018 .

[4]  Silvia Noschese,et al.  Eigenvalue condition numbers: zero-structured versus traditional , 2006 .

[5]  Sui Sun Cheng,et al.  EXPLICIT EIGENVALUES AND INVERSES OF TRIDIAGONAL TOEPLITZ MATRICES WITH FOUR PERTURBED CORNERS , 2008, The ANZIAM Journal.

[6]  Wen-Chyuan Yueh EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES , 2005 .

[7]  Lothar Reichel,et al.  The structured distance to normality of an irreducible real tridiagonal matrix. , 2007 .

[8]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[9]  Lothar Reichel,et al.  Tridiagonal Toeplitz matrices: properties and novel applications , 2013, Numer. Linear Algebra Appl..

[10]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[11]  Tommaso Proietti,et al.  ON THE SPECTRAL PROPERTIES OF MATRICES ASSOCIATED WITH TREND FILTERS , 2010, Econometric Theory.

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  L. Trefethen,et al.  Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .

[14]  The distance between the eigenvalues of Hermitian matrices , 1986 .

[15]  Lothar Reichel,et al.  The structured distance to normality of banded Toeplitz matrices , 2009 .

[16]  L. Trefethen Spectra and pseudospectra , 2005 .

[17]  Lothar Reichel,et al.  Approximated structured pseudospectra , 2016, Numer. Linear Algebra Appl..

[18]  N. Bebiano,et al.  Structured distance to normality of tridiagonal matrices , 2018, Linear Algebra and its Applications.

[19]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .

[20]  Nicola Guglielmi,et al.  Computing the Structured Pseudospectrum of a Toeplitz Matrix and Its Extreme Points , 2012, SIAM J. Matrix Anal. Appl..

[21]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[22]  Fasma Diele,et al.  The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices☆ , 1998 .

[23]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[24]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[25]  A. Böttcher,et al.  Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices , 2017 .

[26]  Albrecht Böttcher,et al.  Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices , 2015, J. Approx. Theory.

[27]  Lothar Reichel,et al.  SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS , 2009 .

[28]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[29]  Silvia Noschese,et al.  Eigenvalue patterned condition numbers: Toeplitz and Hankel cases , 2007 .

[30]  E. Süli,et al.  Numerical Solution of Partial Differential Equations , 2014 .