Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz‐type matrices
暂无分享,去创建一个
[1] Gene H. Golub,et al. On Fourier-Toeplitz methods for separable elliptic problems , 1974 .
[2] Lothar Reichel,et al. Computing unstructured and structured polynomial pseudospectrum approximations , 2017, J. Comput. Appl. Math..
[3] A. Böttcher,et al. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices , 2018 .
[4] Silvia Noschese,et al. Eigenvalue condition numbers: zero-structured versus traditional , 2006 .
[5] Sui Sun Cheng,et al. EXPLICIT EIGENVALUES AND INVERSES OF TRIDIAGONAL TOEPLITZ MATRICES WITH FOUR PERTURBED CORNERS , 2008, The ANZIAM Journal.
[6] Wen-Chyuan Yueh. EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES , 2005 .
[7] Lothar Reichel,et al. The structured distance to normality of an irreducible real tridiagonal matrix. , 2007 .
[8] Daniel Kressner,et al. Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..
[9] Lothar Reichel,et al. Tridiagonal Toeplitz matrices: properties and novel applications , 2013, Numer. Linear Algebra Appl..
[10] G. Hedstrom,et al. Numerical Solution of Partial Differential Equations , 1966 .
[11] Tommaso Proietti,et al. ON THE SPECTRAL PROPERTIES OF MATRICES ASSOCIATED WITH TREND FILTERS , 2010, Econometric Theory.
[12] Gene H. Golub,et al. Matrix computations , 1983 .
[13] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[14] The distance between the eigenvalues of Hermitian matrices , 1986 .
[15] Lothar Reichel,et al. The structured distance to normality of banded Toeplitz matrices , 2009 .
[16] L. Trefethen. Spectra and pseudospectra , 2005 .
[17] Lothar Reichel,et al. Approximated structured pseudospectra , 2016, Numer. Linear Algebra Appl..
[18] N. Bebiano,et al. Structured distance to normality of tridiagonal matrices , 2018, Linear Algebra and its Applications.
[19] Albrecht Böttcher,et al. Spectral properties of banded Toeplitz matrices , 1987 .
[20] Nicola Guglielmi,et al. Computing the Structured Pseudospectrum of a Toeplitz Matrix and Its Extreme Points , 2012, SIAM J. Matrix Anal. Appl..
[21] G. W. Stewart,et al. Matrix algorithms , 1998 .
[22] Fasma Diele,et al. The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices☆ , 1998 .
[23] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[24] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[25] A. Böttcher,et al. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices , 2017 .
[26] Albrecht Böttcher,et al. Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices , 2015, J. Approx. Theory.
[27] Lothar Reichel,et al. SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS , 2009 .
[28] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[29] Silvia Noschese,et al. Eigenvalue patterned condition numbers: Toeplitz and Hankel cases , 2007 .
[30] E. Süli,et al. Numerical Solution of Partial Differential Equations , 2014 .