A Fast Time Stepping Method for Evaluating Fractional Integrals

We evaluate the fractional integral $I^\alpha[f](t)=\frac{1}{\Gamma(\alpha)}\int_0^t(t-\tau)^{\alpha-1}\,f(\tau)\,d\tau$, $0<\alpha<1$, at time steps $t=\Delta t,2\Delta t,\dots,N\Delta t$ by making use of the integral representation of the convolution kernel $t^{\alpha-1}=\frac{1}{\Gamma(1-\alpha)}\int_0^{\infty}e^{-\xi\,t}\,\xi^{-\alpha}\,d\xi$. We construct an efficient $Q$-point quadrature of this integral representation and use it as a part of a fast time stepping method. The new method has algorithmic complexity $O(NQ)$ and storage requirement $O(Q)$. The number of quadrature nodes $Q$ is independent of $N$ and grows like $O\bigl(\bigl(-\log\epsilon-\log\Delta t\bigr)^2\bigr)$, where $\epsilon$ is the quadrature error tolerance and $\Delta t$ is the size of the time step. The (possible) singularity of $f$ near $\tau=0$ is taken into account. This new method is particularly well-suited for long time simulations.

[1]  Leslie Greengard,et al.  Spectral Approximation of the Free-Space Heat Kernel , 2000 .

[2]  Lothar Gaul,et al.  On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems , 2006 .

[3]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[4]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[5]  P. Ruge,et al.  Treatment of dynamic systems with fractional derivatives without evaluating memory-integrals , 2002 .

[6]  Takemitsu Hasegawa,et al.  Uniform approximation to fractional derivatives of functions of algebraic singularity , 2009 .

[7]  C. Lubich Discretized fractional calculus , 1986 .

[8]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[9]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[10]  Christian Lubich,et al.  Adaptive, Fast, and Oblivious Convolution in Evolution Equations with Memory , 2006, SIAM J. Sci. Comput..

[11]  M. M. Chawla,et al.  Error estimates for Gauss quadrature formulas for analytic functions , 1968 .

[12]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[13]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[14]  Gérard Montseny,et al.  Diffusive representation of pseudo-differential time-operators , 1998 .

[15]  杉浦 洋,et al.  Quadrature rule for Abel's equations: uniformly approximating fractional derivatives (計算科学の基盤技術としての高速アルゴリズムとその周辺--RIMS研究集会) , 2008 .

[16]  N. Ford,et al.  Pitfalls in fast numerical solvers for fractional differential equations , 2006 .

[17]  Jian-Fei Lu,et al.  Wave field simulation for heterogeneous porous media with singular memory drag force , 2005 .

[18]  Neville J. Ford,et al.  The numerical solution of fractional differential equations: Speed versus accuracy , 2001, Numerical Algorithms.

[19]  Denis Matignon,et al.  DIFFUSIVE REPRESENTATIONS FOR THE ANALYSIS AND SIMULATION OF FLARED ACOUSTIC PIPES WITH VISCO-THERMAL LOSSES , 2006 .

[20]  P. Davis,et al.  On the estimation of quadrature errors for analytic functions , 1954 .

[21]  O. Agrawal,et al.  A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives , 2002 .

[22]  Anindya Chatterjee,et al.  Statistical origins of fractional derivatives in viscoelasticity , 2005 .

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[25]  L. Greengard,et al.  A fast algorithm for the evaluation of heat potentials , 1990 .

[26]  Kai Diethelm,et al.  An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives , 2008, Numerical Algorithms.

[27]  Denis Matignon,et al.  Diffusive representation for pseudo-differentially damped nonlinear systems , 2001 .

[28]  Kai Diethelm,et al.  Generalized compound quadrature formulae for finite-part integrals , 1997 .

[29]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[30]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[31]  Olof J. Staffans Well-posedness and stabilizability of a viscoelastic equation in energy space , 1994 .