Invited Article: Channel performance for indoor and outdoor terahertz wireless links

One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of...

[1]  Tetsuya Kawanishi,et al.  Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology , 2015 .

[2]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[3]  Sebastian Priebe,et al.  Towards THz Communications - Status in Research, Standardization and Regulation , 2014 .

[4]  Tadao Nagatsuma,et al.  24 Gbit/s data transmission in 300 GHz band for future terahertz communications , 2012 .

[5]  Jason Rife,et al.  Exploiting the Terahertz Band for Radionavigation , 2016 .

[6]  Cheng Wang,et al.  0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications , 2014, IEEE Transactions on Terahertz Science and Technology.

[7]  Toshio Morioka,et al.  400-GHz Wireless Transmission of 60-Gb/s Nyquist-QPSK Signals Using UTC-PD and Heterodyne Mixer , 2016, IEEE Transactions on Terahertz Science and Technology.

[8]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[9]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[10]  T. Kurner,et al.  Performance Analysis of Future Multigigabit Wireless Communication Systems at THz Frequencies With Highly Directive Antennas in Realistic Indoor Environments , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Sasitharan Balasubramaniam,et al.  Integrated Terahertz Communication With Reflectors for 5G Small-Cell Networks , 2017, IEEE Transactions on Vehicular Technology.

[12]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[13]  Emilien Peytavit,et al.  Optically power supplied Gbit/s wireless hotspot using 1.55 μm THz photomixer and heterodyne detection at 200 GHz , 2010 .

[14]  G. Ducournau,et al.  32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection , 2015 .

[15]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[16]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[17]  N. Kukutsu,et al.  120-GHz-Band Wireless Link Technologies for Outdoor 10-Gbit/s Data Transmission , 2012, IEEE Transactions on Microwave Theory and Techniques.

[18]  Thomas Schneider,et al.  Ultrahigh-Bitrate Wireless Data Communications via THz-Links; Possibilities and Challenges , 2015 .

[19]  Arnulf Leuther,et al.  Towards MMIC-Based 300GHz Indoor Wireless Communication Systems , 2015, IEICE Trans. Electron..

[20]  M. Koch,et al.  Scattering Analysis for the Modeling of THz Communication Systems , 2007, IEEE Transactions on Antennas and Propagation.

[21]  T. Kurner,et al.  Diffuse Scattering From Rough Surfaces in THz Communication Channels , 2011, IEEE Transactions on Terahertz Science and Technology.

[22]  Guillermo Carpintero,et al.  Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research , 2015, IEICE Trans. Electron..

[23]  Luis M. Correia,et al.  Characterisation of propagation in 60 GHz radio channels (invited) , 2004 .

[24]  N. Kukutsu,et al.  Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies , 2008, Journal of Lightwave Technology.

[25]  Fan Li,et al.  A 400G optical wireless integration delivery system. , 2013, Optics express.

[26]  Zhe Chen,et al.  220 GHz outdoor wireless communication system based on a Schottky-diode transceiver , 2016, IEICE Electron. Express.

[27]  Roman Maslennikov,et al.  Experimental investigations of 60 GHz WLAN systems in office environment , 2009, IEEE Journal on Selected Areas in Communications.

[28]  Axel Tessmann,et al.  64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency , 2015 .

[29]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[30]  Peter F. Driessen Gigabit/s indoor wireless systems with directional antennas , 1996, IEEE Trans. Commun..

[31]  Tadao Nagatsuma,et al.  8 Gbit/s wireless data transmission at 250 GHz , 2009 .

[32]  M. Koch,et al.  Omnidirectional terahertz mirrors: A key element for future terahertz communication systems , 2006 .

[33]  Anthony Ng'oma,et al.  Spectral efficient 64-QAM-OFDM terahertz communication link. , 2017, Optics express.

[34]  J. Federici,et al.  2.5 Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source , 2011 .

[35]  Theodore S. Rappaport,et al.  Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks , 2015, IEEE Access.

[36]  T. Schneider,et al.  All Active MMIC-Based Wireless Communication at 220 GHz , 2011, IEEE Transactions on Terahertz Science and Technology.

[37]  Hans J. Liebe,et al.  The atmospheric water vapor continuum below 300 GHz , 1983, 1983 Eighth International Conference on Infrared and Millimeter Waves.

[38]  K. Ishigaki,et al.  Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes , 2012 .

[39]  I. A. Ibraheem,et al.  Low-Dispersive Dielectric Mirrors for Future Wireless Terahertz Communication Systems , 2008, IEEE Microwave and Wireless Components Letters.

[40]  F. V. Dijk,et al.  146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system. , 2012, Optics express.

[41]  Philippe Nouvel,et al.  High-definition television transmission at 600 GHz combining THz photonics hotspot and high-sensitivity heterodyne receiver , 2014 .

[42]  T. Kurner,et al.  The Impact of Reflections From Stratified Building Materials on the Wave Propagation in Future Indoor Terahertz Communication Systems , 2008, IEEE Transactions on Antennas and Propagation.

[43]  Theodore S. Rappaport,et al.  Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications , 2013, IEEE Transactions on Antennas and Propagation.

[44]  Kosuke Katayama,et al.  Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication , 2015, IEICE Trans. Electron..

[45]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[46]  Kei Sakaguchi,et al.  Channel Measurement and Modeling for 5G Urban Microcellular Scenarios , 2016, Sensors.

[47]  Mahboubeh Mandehgar,et al.  Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory. , 2014, Optics express.

[48]  N. Kukutsu,et al.  10-Gbit/s Wireless Link Using InP HEMT MMICs for Generating 120-GHz-Band Millimeter-Wave Signal , 2009, IEEE Transactions on Microwave Theory and Techniques.

[49]  Jianjun Ma,et al.  Frequency-division multiplexer and demultiplexer for terahertz wireless links , 2017, Nature Communications.

[50]  M. Koch,et al.  Terahertz characterisation of building materials , 2005 .

[51]  Safumi Suzuki,et al.  Terahertz Wireless Data Transmission With Frequency and Polarization Division Multiplexing Using Resonant-Tunneling-Diode Oscillators , 2017, IEEE Transactions on Terahertz Science and Technology.

[52]  Katarzyna Balakier,et al.  Photonic generation for multichannel THz wireless communication. , 2014, Optics express.