Optical combustion sensor data interpretation using hybrid negative selection algorithm with artificial immune networks

In most extended in Poland PC burners an individual air excess ratio rules an amount of pollution generated, yet there is a lack of method that allows measurement of output parameters. It is therefore necessary to use indirect methods, which could primarily include acoustic, and optical methods. These methods are non-invasive and can provide virtually not delayed and additionally spatially selective information about the combustion process but they are really difficult in interpretation. The article shows application of relatively new class of classification methods – the artificial immunology algorithms to the combustion process diagnostics consisting in detection of incorrect air excess in pulverised coal burner on the basis of signals acquired from optical sensor.