Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts

[1]  M. Leeflang,et al.  Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. , 2013, Acta biomaterialia.

[2]  Aaron F. Cipriano,et al.  In vitro degradation of four magnesium–zinc–strontium alloys and their cytocompatibility with human embryonic stem cells , 2013, Journal of Materials Science: Materials in Medicine.

[3]  C. Grandi,et al.  Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy , 2012, Journal of Materials Science: Materials in Medicine.

[4]  Zhiming Yu,et al.  In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. , 2012, Acta biomaterialia.

[5]  B. Rinner,et al.  Behaviour of human physeal chondro-progenitorcells in early growth plate injury response in vitro , 2012, International Orthopaedics.

[6]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[7]  W. Wells,et al.  The Lanthanides, Rare Earth Elements , 2012 .

[8]  Yufeng Zheng,et al.  Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. , 2011, Acta biomaterialia.

[9]  M. Kietzmann,et al.  Effects of Degradable Mg-Ca Alloys on Dendritic Cell Function , 2011, Journal of biomaterials applications.

[10]  Fan Zhang,et al.  In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. , 2010, Biomaterials.

[11]  Xiaoling Zhang,et al.  Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation , 2010, Biomedical materials.

[12]  M. Leeflang,et al.  In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys , 2010, Journal of materials science. Materials in medicine.

[13]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[14]  Frank Witte,et al.  Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. , 2010, Acta biomaterialia.

[15]  Yufeng Zheng,et al.  Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. , 2010, Biomaterials.

[16]  Henning Windhagen,et al.  Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae , 2010, Journal of Materials Science.

[17]  M. Peuster,et al.  Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. , 2009, Journal of biomedical materials research. Part A.

[18]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[19]  B. Michalke,et al.  JEM spotlight: metal speciation related to neurotoxicity in humans. , 2009, Journal of environmental monitoring : JEM.

[20]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[21]  M. McKee,et al.  Endocrine Regulation of Energy Metabolism by the Skeleton , 2007, Cell.

[22]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[23]  Frank Witte,et al.  Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. , 2006, Tissue engineering.

[24]  S. Porat,et al.  Removal of Flexible Titanium Nails in Children , 2006, Journal of pediatric orthopedics.

[25]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[26]  Besim Ben Nissan,et al.  The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. , 2005, Biomaterials.

[27]  Véronique Lefebvre,et al.  Transcriptional control of chondrocyte fate and differentiation. , 2005, Birth defects research. Part C, Embryo today : reviews.

[28]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[29]  Yong Wang,et al.  Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid , 2004 .

[30]  C. R. Howlett,et al.  Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. , 2002, Journal of biomedical materials research.

[31]  B. Evans,et al.  In Vitro Effects of Chemotherapeutic Agents on Human Osteoblast-like cells , 2002, Calcified Tissue International.

[32]  W. Wells,et al.  The Lanthanides, Rare Earth Metals , 2001 .

[33]  L. Gerstenfeld,et al.  Expression of bone‐specific genes by hypertrophic chondrocytes: Implications of the complex functions of the hypertrophic chondrocyte during endochondral bone development , 1996, Journal of cellular biochemistry.

[34]  S. Hirano,et al.  Exposure, metabolism, and toxicity of rare earths and related compounds. , 1996, Environmental health perspectives.

[35]  V. Lefebvre,et al.  Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. , 1990, Biochimica et biophysica acta.

[36]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[37]  J. Abbott,et al.  THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS , 1966, The Journal of cell biology.

[38]  秦岭 In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal , 2012 .

[39]  C. Xian,et al.  Injury responses and repair mechanisms of the injured growth plate. , 2011, Frontiers in bioscience.

[40]  S. Stanzl-Tschegg,et al.  Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. , 2011, Acta biomaterialia.

[41]  P. Lu,et al.  Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[42]  M. Staiger,et al.  Bone-like matrix formation on magnesium and magnesium alloys , 2008, Journal of materials science. Materials in medicine.

[43]  C. H. Powell,et al.  Patty's Toxicology , 2001 .

[44]  L. Claes,et al.  Mechanical characterization of biodegradable implants. , 1992, Clinical materials.

[45]  J. Coleman,et al.  Structure and mechanism of alkaline phosphatase. , 1992, Annual review of biophysics and biomolecular structure.

[46]  J. Metaizeau,et al.  [Closed flexible medullary nailing in pediatric traumatology]. , 1983, Chirurgie pediatrique.

[47]  H. Coon Clonal stability and phenotypic expression of chick cartilage cells in vitro. , 1966, Proceedings of the National Academy of Sciences of the United States of America.