Calculation of the stability of nonperiodic solids using classical force fields and the method of increments: N2o as an example

Combining classical force fields for the Hartree–Fock (HF) part and the method of increments for post‐HF contributions, we calculate the cohesive energy of the ordered and randomly disordered nitrous oxide (N2O) solid. At 0 K, ordered N2O is most favorable with a cohesive energy of −27.7 kJ/mol. At temperatures above 60 K, more disordered structures become compatible and a phase transition to completely disordered N2O is predicted. Comparison with experiment in literature suggests that experimentally prepared N2O crystals are mainly disordered due to a prohibitively high activation energy of ordering processes. © 2015 Wiley Periodicals, Inc.

[1]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[2]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[3]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[4]  J. Mintmire,et al.  Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations , 1982 .

[5]  Stoll,et al.  Correlation energy of diamond. , 1992, Physical review. B, Condensed matter.

[6]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[7]  B. Paulus,et al.  Method of increments for the halogen molecular crystals: Cl, Br, and I. , 2014, The Journal of chemical physics.

[8]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[9]  Cesare Pisani,et al.  CRYSCOR: a program for the post-Hartree-Fock treatment of periodic systems. , 2012, Physical chemistry chemical physics : PCCP.

[10]  G. Cardini,et al.  Molecular dynamics simulation of the vibrational properties of a disordered N2O crystal. II. The symmetric stretching mode , 1991 .

[11]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[12]  H. Chihara,et al.  A New Condensed Gas Calorimeter. Thermodynamic Properties of Solid and Liquid Dinitrogen Oxide , 1974 .

[13]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[14]  G. Cardini,et al.  Molecular dynamics simulation of the vibrational properties of a disordered N2O crystal. I, Lattice frequencies , 1990 .

[15]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[16]  Schuetz Martin,et al.  Density Fitting for correlated calculations in periodic systems , 2010 .

[17]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[18]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[19]  Denis Usvyat,et al.  Incrementally Corrected Periodic Local MP2 Calculations: I. The Cohesive Energy of Molecular Crystals. , 2013, Journal of chemical theory and computation.

[20]  Hermann Stoll,et al.  The correlation energy of crystalline silicon , 1992 .

[21]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[22]  Peter J. Knowles,et al.  Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories , 1994 .

[23]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[24]  Maciej Gutowski,et al.  Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations , 1988 .

[25]  B. Paulus The method of increments—a wavefunction-based ab initio correlation method for solids , 2006 .

[26]  H. Stoll,et al.  Local correlation methods for solids: Comparison of incremental and periodic correlation calculations for the argon fcc crystal , 2011 .

[27]  M. Conradi,et al.  Head-tail disorder and reorientation in solid N 2 O and CO: Dielectric study , 1982 .

[28]  Millard H. Alexander Molecular Electronic Structure , 2012 .

[29]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[30]  W. C. Hamilton,et al.  CONFIRMATION OF DISORDER IN SOLID NITROUS OXIDE BY NEUTRON DIFFRACTION1 , 1961 .

[31]  Peter Pulay,et al.  Second-order Møller–Plesset calculations with dual basis sets , 2003 .

[32]  T. Atake Application of calorimetry and thermodynamics to critical problems in materials science , 2009 .

[33]  Giorgio F. Signorini,et al.  Molecular dynamics and head-tail disorder in the Raman spectrum of crystalline N2O , 1987 .

[34]  Cesare Pisani,et al.  Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications , 2008, J. Comput. Chem..

[35]  M. Schütz,et al.  Periodic local Møller-Plesset second order perturbation theory method applied to molecular crystals: study of solid NH3 and CO2 using extended basis sets. , 2010, The Journal of chemical physics.

[36]  Martin Schütz,et al.  A new, fast, semi-direct implementation of linear scaling local coupled cluster theory , 2002 .

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  B. Paulus,et al.  Wavefunction-based electron correlation methods for solids. , 2012, Physical chemistry chemical physics : PCCP.

[39]  S. Kovalenko,et al.  Electron‐diffraction studies of thin layers of solidified CO and N2O , 1973 .

[40]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[41]  B. Kuchta,et al.  Calculated properties of solid N2O at various temperatures and pressures , 1991 .

[42]  H. Stoll On the correlation energy of graphite , 1992 .

[43]  W. Giauque,et al.  The Heat Capacity and Vapor Pressure of Solid and Liquid Nitrous Oxide. The Entropy from its Band Spectrum , 1935 .

[44]  W. Thiel,et al.  The performance of the semi-empirical AM1 method on small and nanometre-sized N2O clusters , 2004 .

[45]  W. Giauque,et al.  THE HEAT CAPACITY AND ENTROPY OF CARBON MONOXIDE. HEAT OF VAPORIZATION. VAPOR PRESSURES OF SOLID AND LIQUID. FREE ENERGY TO 5000°K. FROM SPECTROSCOPIC DATA , 1932 .

[46]  K. Koepernik,et al.  Full-potential band-structure calculation of iron pyrite , 1999 .

[47]  L. Maschio,et al.  Fitting of local densities in periodic systems , 2008 .

[48]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[49]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[50]  R. Hayn,et al.  Self-consistent LCAO-CPA method for disordered alloys , 1997 .

[51]  R. Scott,et al.  Energies of Disorientation in Solid Carbon Monoxide and Nitrous Oxide1 , 1964 .