Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides

[1]  G. Duan,et al.  Passive Chaos Bandwidth Enhancement Under Dual-Optical Feedback with Hybrid III–V/Si DFB Laser , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  J. Maultzsch,et al.  Light-Matter Interactions in Two-Dimensional Transition Metal Dichalcogenides: Dominant Excitonic Transitions in Mono- and Few-Layer MoX$_2$ and Band Nesting , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Bennett B. Goldberg,et al.  Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2. , 2016, Nano letters.

[4]  M. Rohlfing,et al.  Reversible uniaxial strain tuning in atomically thin WSe2 , 2016 .

[5]  S. Banerjee,et al.  Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport. , 2016, ACS nano.

[6]  A. Castellanos-Gómez,et al.  Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. , 2015, Nanoscale.

[7]  F. Guinea,et al.  Strong Modulation of Optical Properties in Black Phosphorus through Strain-Engineered Rippling. , 2015, Nano letters.

[8]  Gang Zhang,et al.  Strain effects on thermoelectric properties of two-dimensional materials , 2015 .

[9]  David E. Aspnes,et al.  Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films , 2015, Scientific Reports.

[10]  Junyong Kang,et al.  Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2 , 2015, Nano Research.

[11]  A. Kis,et al.  Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2. , 2015, Nano letters.

[12]  F. Guinea,et al.  Strain engineering in semiconducting two-dimensional crystals , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  G. Steele,et al.  Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate , 2015, 1509.09118.

[14]  Jingbo Li,et al.  Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. , 2015, Nano letters.

[15]  Madan Dubey,et al.  Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition , 2014, Nature Communications.

[16]  J. Hone,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.

[17]  D. Duong,et al.  Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. , 2014, Nanoscale.

[18]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[19]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[20]  H. Ago,et al.  Strain engineering the properties of graphene and other two-dimensional crystals. , 2014, Physical chemistry chemical physics : PCCP.

[21]  Sefaattin Tongay,et al.  Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling , 2014, Nature Communications.

[22]  Guocheng Shao,et al.  new fabrication method for all-PDMS waveguides , 2013 .

[23]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[24]  Yanlong Wang,et al.  Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. , 2013, Small.

[25]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[26]  P. Ajayan,et al.  Blueshift of theA-exciton peak in folded monolayer1H-MoS2 , 2013, 1307.1720.

[27]  Francisco Guinea,et al.  Local strain engineering in atomically thin MoS2. , 2013, Nano letters.

[28]  X. Marie,et al.  Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 , 2013, 1306.3442.

[29]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[30]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[31]  F. M. Peeters,et al.  Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 , 2013, 1303.5861.

[32]  Á. Rubio,et al.  Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 , 2013, 1302.6635.

[33]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[34]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[35]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[36]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[37]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[38]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[39]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[40]  M. Rohlfing Electronic excitations from a perturbative LDA+GdW approach , 2010, 1008.3492.

[41]  Lei Gong,et al.  Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite , 2010, Advanced materials.

[42]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[43]  J. E. Mark Polymer Data Handbook , 2009 .

[44]  P. Krüger,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001, cond-mat/0107541.

[45]  T. Sokkar,et al.  Comparative study on interferometric techniques for measurement of the optical properties of a fibre , 1999 .

[46]  Krueger,et al.  Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. , 1993, Physical review. B, Condensed matter.

[47]  D. Clarke Chapter 2 Fracture of Silicon and Other Semiconductors , 1992 .

[48]  David E. Aspnes,et al.  Differential reflection spectroscopy of very thin surface films , 1971 .

[49]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .