Analysis of a Helmholtz preconditioning problem motivated by uncertainty quantification

<jats:p>This paper analyses the following question: let <jats:bold>A</jats:bold><jats:sub><jats:italic>j</jats:italic></jats:sub>, <jats:italic>j</jats:italic> = 1,2, be the Galerkin matrices corresponding to finite-element discretisations of the exterior Dirichlet problem for the heterogeneous Helmholtz equations ∇⋅ (<jats:italic>A</jats:italic><jats:sub><jats:italic>j</jats:italic></jats:sub>∇<jats:italic>u</jats:italic><jats:sub><jats:italic>j</jats:italic></jats:sub>) + <jats:italic>k</jats:italic><jats:sup>2</jats:sup><jats:italic>n</jats:italic><jats:sub><jats:italic>j</jats:italic></jats:sub><jats:italic>u</jats:italic><jats:sub><jats:italic>j</jats:italic></jats:sub> = −<jats:italic>f</jats:italic>. How small must <jats:inline-formula><jats:alternatives><jats:tex-math>$\|A_{1} -A_{2}\|_{L^{q}}$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>∥</mml:mo> <mml:msub> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mo>∥</mml:mo> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$\|{n_{1}} - {n_{2}}\|_{L^{q}}$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>∥</mml:mo> <mml:msub> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mo>∥</mml:mo> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> be (in terms of <jats:italic>k</jats:italic>-dependence) for GMRES applied to either <jats:inline-formula><jats:alternatives><jats:tex-math>$(\mathbf {A}_1)^{-1}\mathbf {A}_2$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> or <jats:bold>A</jats:bold><jats:sub>2</jats:sub>(<jats:bold>A</jats:bold><jats:sub>1</jats:sub>)<jats:sup>− 1</jats:sup> to converge in a <jats:italic>k</jats:italic>-independent number of iterations for arbitrarily large <jats:italic>k</jats:italic>? (In other words, for <jats:bold>A</jats:bold><jats:sub>1</jats:sub> to be a good left or right preconditioner for <jats:bold>A</jats:bold><jats:sub>2</jats:sub>?) We prove results answering this question, give theoretical evidence for their sharpness, and give numerical experiments supporting the estimates. Our motivation for tackling this question comes from calculating quantities of interest for the Helmholtz equation with <jats:italic>random</jats:italic> coefficients <jats:italic>A</jats:italic> and <jats:italic>n</jats:italic>. Such a calculation may require the solution of many deterministic Helmholtz problems, each with different <jats:italic>A</jats:italic> and <jats:italic>n</jats:italic>, and the answer to the question above dictates to what extent a previously calculated inverse of one of the Galerkin matrices can be used as a preconditioner for other Galerkin matrices.</jats:p>

[1]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[2]  Eero Vainikko,et al.  Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption , 2015, Math. Comput..

[3]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[4]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[5]  Ivan G. Graham,et al.  Stability and finite element error analysis for the Helmholtz equation with variable coefficients , 2019, Math. Comput..

[6]  Lars Hr̲mander,et al.  The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators , 1985 .

[7]  Frances Y. Kuo,et al.  Quasi-Monte Carlo finite element analysis for wave propagation in heterogeneous random media , 2020, SIAM/ASA J. Uncertain. Quantification.

[8]  Xiao-Chuan Cai,et al.  A Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems , 2009 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  Andrea Moiola,et al.  Is the Helmholtz Equation Really Sign-Indefinite? , 2014, SIAM Rev..

[11]  Eugene E. Tyrtyshnikov,et al.  Some Remarks on the Elman Estimate for GMRES , 2005, SIAM J. Matrix Anal. Appl..

[12]  Semiclassical analysis , 2019, Graduate Studies in Mathematics.

[13]  L. Hörmander Fourier integral operators. I , 1995 .

[14]  Azeddine Essai Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.

[15]  Ivan G. Graham,et al.  Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption , 2017, Math. Comput..

[16]  Jeffrey Galkowski,et al.  Local absorbing boundary conditions on fixed domains give order-one errors for high-frequency waves , 2021, ArXiv.

[17]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[18]  I. Duff,et al.  On George’s Nested Dissection Method , 1976 .

[19]  Haijun Wu,et al.  Preasymptotic Error Analysis of Higher Order FEM and CIP-FEM for Helmholtz Equation with High Wave Number , 2014, SIAM J. Numer. Anal..

[20]  David Lafontaine,et al.  A sharp relative-error bound for the Helmholtz h-FEM at high frequency , 2019, Numerische Mathematik.

[21]  G. Vodev,et al.  Distribution of the resonances and local energy decay in the transmission problem , 1999 .

[22]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[23]  Martin J. Gander,et al.  A Class of Iterative Solvers for the Helmholtz Equation: Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and Optimized Schwarz Methods , 2016, SIAM Rev..

[24]  Eike Hermann Müller,et al.  Wavenumber-explicit analysis for the Helmholtz h-BEM: error estimates and iteration counts for the Dirichlet problem , 2016, Numerische Mathematik.

[25]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[26]  A. Moiola,et al.  Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions , 2017, Mathematical Models and Methods in Applied Sciences.

[27]  David A. Ham,et al.  Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly , 2014, ACM Trans. Archit. Code Optim..

[28]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[29]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[30]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[31]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[32]  Jeffrey Galkowski,et al.  Optimal constants in nontrapping resolvent estimates and applications in numerical analysis , 2018, Pure and Applied Analysis.

[33]  L. Hörmander,et al.  Fourier integral operators. II , 1972 .

[34]  Shihua Gong,et al.  Domain decomposition preconditioners for high-order discretisations of the heterogeneous Helmholtz equation , 2020, ArXiv.

[35]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[36]  Stefan Güttel,et al.  Some observations on weighted GMRES , 2014, Numerical Algorithms.

[37]  O. R. Pembery,et al.  The Helmholtz equation in heterogeneous media: A priori bounds, well-posedness, and resonances , 2018, Journal of Differential Equations.

[38]  G. Vodev,et al.  DISTRIBUTION OF RESONANCES AND LOCAL ENERGY DECAY IN THE TRANSMISSION PROBLEM. II , 1999 .

[39]  Catherine Elizabeth Powell,et al.  Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random Data , 2008, SIAM J. Sci. Comput..

[40]  E. A. Spence,et al.  Domain Decomposition with Local Impedance Conditions for the Helmholtz Equation with Absorption , 2018, SIAM J. Numer. Anal..

[41]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[42]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[43]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[44]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[45]  M. Ganesh,et al.  A coercive heterogeneous media Helmholtz model: formulation, wavenumber-explicit analysis, and preconditioned high-order FEM , 2019, Numerical Algorithms.

[46]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[47]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[48]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[49]  N. Filonov Second-Order Elliptic Equation of Divergence Form Having a Compactly Supported Solution , 2001 .

[50]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[51]  Haijun Wu,et al.  Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version , 2014 .

[52]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[53]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[54]  S. Sauter,et al.  Stability estimate for the Helmholtz equation with rapidly jumping coefficients , 2017, Zeitschrift für angewandte Mathematik und Physik.

[55]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[56]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[57]  Howard C. Elman,et al.  Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .

[58]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[59]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[60]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[61]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[62]  S. Nicaise,et al.  Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems , 2019, IMA Journal of Numerical Analysis.

[63]  Qifeng Liao,et al.  Efficient Spectral Stochastic Finite Element Methods for Helmholtz Equations with Random Inputs , 2019, East Asian Journal on Applied Mathematics.

[64]  Euan A. Spence,et al.  Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering , 2014, SIAM J. Math. Anal..