FISH: A THREE-DIMENSIONAL PARALLEL MAGNETOHYDRODYNAMICS CODE FOR ASTROPHYSICAL APPLICATIONS
暂无分享,去创建一个
Simon Scheidegger | U. Pen | S. Whitehouse | R. Käppeli | S. C. Whitehouse | U.-L. Pen | Matthias Liebendörfer | R. Käppeli | S. Scheidegger | M. Liebendörfer
[1] Manuel Torrilhon,et al. Constraint-Preserving Upwind Methods for Multidimensional Advection Equations , 2004, SIAM J. Numer. Anal..
[2] Ue-Li Pen,et al. A FREE, FAST, SIMPLE, AND EFFICIENT TOTAL VARIATION DIMINISHING MAGNETOHYDRODYNAMIC CODE , 2003 .
[3] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[4] Dinshaw S. Balsara,et al. Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..
[5] Paul R. Woodward,et al. A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .
[6] Ue-Li Pen,et al. A High-Resolution Adaptive Moving Mesh Hydrodynamic Algorithm , 1997, astro-ph/9704258.
[7] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[8] T. Mouschovias,et al. Magnetic braking of an aligned rotator during star formation: An exact, time-dependent solution , 1980 .
[9] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[10] H. Poincaré,et al. Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .
[11] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[12] Romain Teyssier,et al. Kinematic dynamos using constrained transport with high order Godunov schemes and adaptive mesh refinement , 2006, J. Comput. Phys..
[13] Astrophysics,et al. The Fate of Nonradiative Magnetized Accretion Flows: Magnetically Frustrated Convection , 2003, astro-ph/0304227.
[14] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.
[15] J. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.
[16] Randall J. LeVeque,et al. A class of approximate Riemann solvers and their relation to relaxation schemes , 2001 .
[17] B. Fryxell,et al. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .
[18] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[19] M. Vinokur,et al. An analysis of finite-difference and finite-volume formulations of conservation laws , 1986 .
[20] A. Caceres,et al. Mapping Initial Hydrostatic Models in Godunov Codes , 2002 .
[21] G. Bryan,et al. Introducing Enzo, an AMR Cosmology Application , 2004, astro-ph/0403044.
[22] Michael L. Norman,et al. Numerical simulations of protostellar jets with nonequilibrium cooling. II: Models of pulsed jets , 1993 .
[23] A. Gautschy,et al. Computational methods for astrophysical fluid flow , 1998 .
[24] L. Landau,et al. Lehrbuch der theoretischen Physik , 2007 .
[25] T. Fischer,et al. THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT , 2007, 0711.2929.
[26] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .
[27] R. LeVeque. Numerical methods for conservation laws , 1990 .
[28] James M. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..
[29] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[31] Dongwook Lee,et al. An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics , 2009, J. Comput. Phys..
[32] M. Liebendörfer,et al. Gravitational waves from 3D MHD core collapse simulations , 2007, 0709.0168.
[33] P. Colella,et al. THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS , 2011, 1110.0740.
[34] P. Teuben,et al. Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.
[35] P. Londrillo,et al. On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .
[36] Susana Serna,et al. A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations , 2009, J. Comput. Phys..
[37] V. G. Weirs,et al. On Validating an Astrophysical Simulation Code , 2002, astro-ph/0206251.
[38] James A. Rossmanith,et al. An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..
[39] N. Risebro,et al. STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION , 2009 .
[40] Michael L. Norman,et al. Numerical Simulations of Protostellar Jets with Nonequilibrium Cooling. I. Method and Two-dimensional Results , 1993 .
[41] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.
[42] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[43] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .