The thermal emission of the exoplanet WASP-3b

We report the detection of thermal emission from the transiting hot Jupiter WASP-3b at 3.6, 4.5 and 8.0 μ mu sing theSpitzer Space Telescope. We obtain planet-to-star flux ratios of 0.209 +0.040 −0.028 , 0.282 ± 0.012 and 0.328 +0.086 −0.055 percent at these wavelengths, respectively, implying infrared brightness temperatures of T3.6µm = 2280 +210 K, T4.5µm = 2400 ± 80K and T8.0µm = 2210 +390 K. We find that WASP-3b falls into an emerging class of highly irradiated planets whose measured temperatures suggest that the planets are dark and redistribute heat around the planet inefficiently. The latter is similarly concluded from 1D atmospheric model comparisons, which also favour the presence of an atmospheric temperature inversion. We compare the WASP-3 system to the proposed inversion–activity relation, finding that it hints at a more complex relation than a simple cut-off in activity implied by previous data. Using eclipse timings we also constrain ecos ω to be −0.0006 +0.0010 −0.0006, suggesting that the eccentricity of WASP-3b can only be large for a narrow range of ω.

[1]  A. Collier Cameron,et al.  Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit , 2011, 1101.5620.

[2]  Nikole K. Lewis,et al.  WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS CoRoT-1 AND CoRoT-2 AT SECONDARY ECLIPSE , 2010, 1011.1019.

[3]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[4]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[5]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[6]  I. Hubeny,et al.  A theoretical interpretation of the measurements of the secondary eclipses of tres-1 and HD 209458b , 2005 .

[7]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[8]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[9]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[10]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[11]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[12]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[13]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[14]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[15]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[16]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves , 2011, 1107.1235.

[17]  Drake Deming,et al.  THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3 , 2009, 0909.5221.

[18]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[19]  Nikole K. Lewis,et al.  Warm Spitzer Photometry of XO-4b, HAT-P-6b and HAT-P-8b , 2011, 1111.5858.

[20]  Nikole K. Lewis,et al.  WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b , 2013, 1305.0833.

[21]  Nikole K. Lewis,et al.  WARM SPITZER OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b , 2012 .

[22]  Christopher J. Campo,et al.  Thermal emission at 3.6–8 μm from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star , 2011, 1112.5145.

[23]  Ralph Neuhäuser,et al.  Transit timing variation in exoplanet WASP-3b , 2010 .

[24]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[25]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[26]  E. Agol,et al.  SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER , 2010, 1011.4066.

[27]  V. S. Dhillon,et al.  ULTRACAM: An Ultra-Fast, Triple-Beam CCD Camera for High-Speed Astrophysics , 2008 .

[28]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[29]  L. Observatory,et al.  DETECTION OF KS-BAND THERMAL EMISSION FROM WASP-3b , 2012, 1202.3435.

[30]  Drake Deming,et al.  Extrasolar Planet Transits Observed at Kitt Peak National Observatory , 2012, 1202.2799.

[31]  I. Hubeny,et al.  Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets , 2006, astro-ph/0607014.

[32]  The GROUSE project - II. Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b , 2011, 1103.0035.

[33]  S. Bloemen,et al.  Magnetic activity of F stars observed by Kepler , 2013, 1312.6997.

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[36]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[37]  I. Boisse,et al.  A new analysis of the WASP-3 system: no evidence for an additional companion , 2012, 1211.0218.

[38]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[39]  Zucker,et al.  The Spectroscopic Orbit of the Planetary Companion Transiting HD 209458. , 2000, The Astrophysical journal.

[40]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[41]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b , 2013, 1309.5261.

[42]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[43]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[44]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[45]  W. C. Bowman,et al.  SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b , 2009, 0911.2218.

[46]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[47]  T. Evans,et al.  An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO , 2013, 1307.2083.

[48]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[49]  John Asher Johnson,et al.  A PROGRADE, LOW-INCLINATION ORBIT FOR THE VERY HOT JUPITER WASP-3b , 2010, 1004.0692.

[50]  V. S. Dhillon,et al.  ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics , 2007 .

[51]  B. Hansen On the Absorption and Redistribution of Energy in Irradiated Planets , 2008, 0801.2972.

[52]  R. G. West,et al.  WASP-3b: a strongly irradiated transiting gas-giant planet , 2007, 0711.0126.

[53]  M. Damasso,et al.  TASTE - III. A homogeneous study of transit time variations in WASP-3b , 2012, 1210.3045.

[54]  Observatoire de Haute-Provence,et al.  The spin–orbit alignment of the transiting exoplanet WASP-3b from Rossiter–McLaughlin observations , 2009, 0912.3643.