Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria.

Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (Desulfovibrio vulgaris, Desulfovibrio desulfuricans G20, Desulfobacterium autotrophicum [draft], Desulfotalea psychrophila and Geobacter sulfurreducens) all contain sdhCAB or frdCAB gene clusters encoding succinate : quinone oxidoreductases. frdD or sdhD genes are missing. The presence and function of succinate dehydrogenase versus fumarate reductase was studied. Desulfovibrio desulfuricans (strain Essex 6) grew by fumarate respiration or by fumarate disproportionation, and contained fumarate reductase activity. Desulfovibrio vulgaris lacked fumarate respiration and contained succinate dehydrogenase activity. Succinate oxidation by the menaquinone analogue 2,3-dimethyl-1,4-naphthoquinone depended on a proton potential, and the activity was lost after degradation of the proton potential. The membrane anchor SdhC contains four conserved His residues which are known as the ligands for two haem B residues. The properties are very similar to succinate dehydrogenase of the Gram-positive (menaquinone-containing) Bacillus subtilis, which uses a reverse redox loop mechanism in succinate : menaquinone reduction. It is concluded that succinate dehydrogenases from menaquinone-containing bacteria generally require a proton potential to drive the endergonic succinate oxidation. Sequence comparison shows that the SdhC subunit of this type lacks a Glu residue in transmembrane helix IV, which is part of the uncoupling E-pathway in most non-electrogenic FrdABC enzymes.

[1]  G. Unden,et al.  Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. , 2001, European journal of biochemistry.

[2]  G. Unden,et al.  C4-Dicarboxylate Degradation in Aerobic and Anaerobic Growth. , 2016, EcoSal Plus.

[3]  Natalia Ivanova,et al.  The ERGOTM genome analysis and discovery system , 2003, Nucleic Acids Res..

[4]  C. Bode,et al.  Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode , 1968 .

[5]  C. Gomes,et al.  The Quinol:Fumarate Oxidoreductase from the Sulphate Reducing Bacterium Desulfovibrio gigas: Spectroscopic and Redox Studies , 2002, Journal of bioenergetics and biomembranes.

[6]  C. Hägerhäll,et al.  Succinate: quinone oxidoreductases. Variations on a conserved theme. , 1997, Biochimica et biophysica acta.

[7]  C. Lancaster,et al.  Succinate:quinone oxidoreductases: an overview. , 2002, Biochimica et biophysica acta.

[8]  P. Engel,et al.  Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux. , 1994, European journal of biochemistry.

[9]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[10]  H. Richter,et al.  Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production , 2000, Archives of Microbiology.

[11]  J. Guest,et al.  Transcriptional Regulation and Organization of thedcuA and dcuB Genes, Encoding Homologous Anaerobic C4-Dicarboxylate Transporters inEscherichia coli , 1998 .

[12]  J. Miller,et al.  Growth of sulphate-reducing bacteria by fumarate dismutation. , 1966, Journal of general microbiology.

[13]  H. Mell,et al.  Cell yields of Vibrio succinogenes growing with formate and fumarate as sole carbon and energy sources in chemostat culture , 1982, Archives of Microbiology.

[14]  G. Unden,et al.  Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b , 1990, Molecular microbiology.

[15]  Achim Kröger,et al.  Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. , 2002, Biochimica et biophysica acta.

[16]  P. Dimroth,et al.  The Escherichia coli Citrate Carrier CitT: a Member of a Novel Eubacterial Transporter Family Related to the 2-Oxoglutarate/Malate Translocator from Spinach Chloroplasts , 1998, Journal of bacteriology.

[17]  H. D. Peck,et al.  Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas , 1981, Journal of bacteriology.

[18]  R. Gunsalus,et al.  Succinate dehydrogenase and fumarate reductase from Escherichia coli. , 2002, Biochimica et biophysica acta.

[19]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[20]  T. Ruíz,et al.  Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. , 2002, European journal of biochemistry.

[21]  A. Kröger,et al.  Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. , 1974, Biochimica et biophysica acta.

[22]  Isolation of fumarate reductase from Desulfovibrio multispirans, a sulfate reducing bacterium. , 1986, Biochemical and biophysical research communications.

[23]  Theodore L Bernhard,et al.  Cell yields of Escherichia coli during anaerobic growth on fumarate and molecular hydrogen , 1978, Archives of Microbiology.

[24]  C. Lancaster,et al.  Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2 , 1998, Molecular microbiology.

[25]  L. Hederstedt,et al.  A structural moDAl for the membrane‐integral domain of succinate:quinone oxidoreductases , 1996, FEBS letters.

[26]  L. Hederstedt,et al.  Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate:menaquinone reductase. , 1995, Biochemistry.

[27]  C. Lancaster,et al.  Succinate:quinone oxidoreductases from epsilon-proteobacteria. , 2002, Biochimica et biophysica acta.

[28]  Matthew Berriman,et al.  Viewing and Annotating Sequence Data with Artemis , 2003, Briefings Bioinform..

[29]  C. Lancaster Wolinella succinogenes quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. , 2002, Biochimica et biophysica acta.

[30]  G. Unden,et al.  Functioning of DcuC as the C4-Dicarboxylate Carrier during Glucose Fermentation by Escherichia coli , 1999, Journal of bacteriology.

[31]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[32]  G. Unden,et al.  C4-dicarboxylate carriers and sensors in bacteria. , 2002, Biochimica et biophysica acta.

[33]  M. Collins,et al.  Respiratory Quinones of Sulphate-Reducing and Sulphur-Reducing Bacteria: A Systematic Investigation , 1986 .

[34]  S. Iwata,et al.  Protonmotive force generation by a redox loop mechanism , 2003, FEBS letters.

[35]  G. Unden,et al.  Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. , 1980, Biochimica et biophysica acta.

[36]  Gaynor A Randle,et al.  Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP‐independent periplasmic transporter , 2005, Molecular microbiology.

[37]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[38]  D. Kelly,et al.  TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria , 1997, Journal of bacteriology.

[39]  G. Unden,et al.  Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct) , 1994, Journal of bacteriology.

[40]  G. Unden,et al.  Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis , 2004, Archives of Microbiology.

[41]  G. Unden,et al.  Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. , 1998, European journal of biochemistry.

[42]  Manfred Auer,et al.  Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution , 1999, Nature.

[43]  G. Unden,et al.  Transport of C 4-Dicarboxylates in Wolinella succinogenes , 2000 .

[44]  B. Poolman,et al.  Characterization of the proton/glutamate symport protein of Bacillus subtilis and its functional expression in Escherichia coli , 1995, Journal of bacteriology.

[45]  G. Thomas,et al.  Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. , 2006, Microbiology.

[46]  W. Mäntele,et al.  Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Ringel,et al.  Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. , 1998, European journal of biochemistry.

[48]  H. Schwalbe,et al.  Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Guest,et al.  Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. , 1998, Journal of bacteriology.

[50]  J. Miller,et al.  The tricarboxylic and acid pathway in Desulfovibrio. , 1977, Canadian journal of microbiology.

[51]  G. Thomas,et al.  The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. , 2001, FEMS microbiology reviews.

[52]  L. Hederstedt Succinate:quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. , 2002, Biochimica et biophysica acta.

[53]  G. Gottschalk,et al.  Fermentation of fumarate and L-malate by Clostridium formicoaceticum , 1978, Journal of bacteriology.

[54]  M. Teixeira,et al.  A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. , 2003, Biochimica et biophysica acta.

[55]  J. Akagi,et al.  Purification of acetokinase from Desulfovibrio desulfuricans , 1966, Journal of bacteriology.