The efficiencies of generating cluster states with weak nonlinearities

We propose a scalable approach to building cluster states of matter qubits using coherent states of light. Recent work on the subject relies on the use of single photonic qubits in the measurement process. These schemes can be made robust to detector loss, spontaneous emission and cavity mismatching but as a consequence the overhead costs grow rapidly, in particular when considering single photon loss. In contrast, our approach uses continuous variables and highly efficient homodyne measurements. We present a two-qubit scheme, with a simple bucket measurement system yielding an entangling operation with success probability 1/2. Then we extend this to a three-qubit interaction, increasing this probability to 3/4. We discuss the important issues of the overhead cost and the time scaling. This leads to a 'no-measurement' approach to building cluster states, making use of geometric phases in phase space.

[1]  Samuel L. Braunstein,et al.  Hybrid quantum computation in quantum optics , 2008 .

[2]  J. Eisert,et al.  Minimal resources for linear optical one-way computing , 2007 .

[3]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[4]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[5]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[6]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[7]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[8]  L-M Duan,et al.  Efficient quantum computation with probabilistic quantum gates. , 2005, Physical review letters.

[9]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[10]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[11]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[12]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[13]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[14]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[15]  P. Knight,et al.  Introductory Quantum Optics: Frontmatter , 2004 .

[16]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[17]  D. Walls,et al.  Macroscopic quantum superpositions by means of single-atom dispersion. , 1990, Optics letters.

[18]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[19]  M. Beck Introductory Quantum Optics , 2005 .

[20]  T. Spiller,et al.  Efficient optical quantum information processing , 2005, quant-ph/0506116.

[21]  Kae Nemoto,et al.  Universal quantum computation on the power of quantum non-demolition measurements , 2005 .

[22]  M. Nielsen,et al.  Noise thresholds for optical quantum computers. , 2005, Physical review letters.

[23]  S. C. Benjamin,et al.  Optical generation of matter qubit graph states , 2005, quant-ph/0506110.

[24]  M. B. Plenio,et al.  Robust creation of entanglement between ions in spatially separate cavities. , 2003 .

[25]  Kae Nemoto,et al.  Quantum error correction via robust probe modes , 2006 .

[26]  P. Zanardi,et al.  Simulation of many-body interactions by conditional geometric phases , 2001, quant-ph/0111017.

[27]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[28]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[29]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[30]  Barry C. Sanders,et al.  Operational formulation of homodyne detection , 2004 .

[31]  Zhi-Ming Zhang,et al.  Entangling distant atoms by interference of polarized photons. , 2003, Physical review letters.

[32]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[33]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[34]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[35]  Wolfgang Dur,et al.  Entanglement purification protocols for all graph states , 2006 .

[36]  Terry Rudolph,et al.  Loss tolerance in one-way quantum computation via counterfactual error correction. , 2006, Physical review letters.

[37]  I. D'Amico,et al.  Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots , 2001, cond-mat/0109337.

[38]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[39]  Kimble,et al.  Spectroscopy with squeezed light. , 1992, Physical review letters.

[40]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[41]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[42]  J. Eisert,et al.  Potential and limits to cluster-state quantum computing using probabilistic gates , 2006, quant-ph/0605014.

[43]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[44]  L-M Duan,et al.  Scalable generation of graph-state entanglement through realistic linear optics. , 2006, Physical review letters.

[45]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[46]  Cooling toolbox for atoms in optical lattices , 2006, cond-mat/0605198.

[47]  William J. Munro,et al.  Error tolerance and tradeoffs in loss- and failure-tolerant quantum computing schemes , 2007 .

[48]  P. Knight,et al.  Proposal for teleportation of an atomic state via cavity decay , 1999, quant-ph/9908004.

[49]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[50]  N. Yoran,et al.  Deterministic linear optics quantum computation with single photon qubits. , 2003, Physical review letters.

[51]  C. Simon,et al.  Robust long-distance entanglement and a loophole-free bell test with ions and photons. , 2003, Physical review letters.

[52]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[53]  G. Schoen,et al.  Quantum Manipulations of Small Josephson Junctions , 1997, cond-mat/9706016.