Hierarchical multi-label classification of social text streams

Hierarchical multi-label classification assigns a document to multiple hierarchical classes. In this paper we focus on hierarchical multi-label classification of social text streams. Concept drift, complicated relations among classes, and the limited length of documents in social text streams make this a challenging problem. Our approach includes three core ingredients: short document expansion, time-aware topic tracking, and chunk-based structural learning. We extend each short document in social text streams to a more comprehensive representation via state-of-the-art entity linking and sentence ranking strategies. From documents extended in this manner, we infer dynamic probabilistic distributions over topics by dividing topics into dynamic "global" topics and "local" topics. For the third and final phase we propose a chunk-based structural optimization strategy to classify each document into multiple classes. Extensive experiments conducted on a large real-world dataset show the effectiveness of our proposed method for hierarchical multi-label classification of social text streams.

[1]  Wouter Weerkamp,et al.  Microblog language identification: overcoming the limitations of short, unedited and idiomatic text , 2012, Language Resources and Evaluation.

[2]  Bin Cao,et al.  Short text classification by detecting information path , 2013, CIKM.

[3]  Yong Yu,et al.  Enhancing diversity, coverage and balance for summarization through structure learning , 2009, WWW '09.

[4]  Mengen Chen,et al.  Short Text Classification Improved by Learning Multi-Granularity Topics , 2011, IJCAI.

[5]  Philip S. Yu,et al.  Multi-label classification by mining label and instance correlations from heterogeneous information networks , 2013, KDD.

[6]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[7]  Yuhong Guo,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Multi-Label Classification Using Conditional Dependency Networks , 2022 .

[8]  Rahul Gupta,et al.  Accurate max-margin training for structured output spaces , 2008, ICML '08.

[9]  Weidong Yang,et al.  Community question topic categorization via hierarchical kernelized classification , 2013, CIKM.

[10]  Xiaojun Wan,et al.  Multi-document summarization using cluster-based link analysis , 2008, SIGIR '08.

[11]  M. de Rijke,et al.  Adding semantics to microblog posts , 2012, WSDM '12.

[12]  Yang Zhao,et al.  Local likelihood modeling of temporal text streams , 2008, ICML '08.

[13]  Saso Dzeroski,et al.  Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics , 2006, PKDD.

[14]  Saso Dzeroski,et al.  Decision trees for hierarchical multi-label classification , 2008, Machine Learning.

[15]  Aixin Sun,et al.  Short text classification using very few words , 2012, SIGIR '12.

[16]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[17]  M. de Rijke,et al.  Personalized time-aware tweets summarization , 2013, SIGIR.

[18]  Mykola Pechenizkiy,et al.  Handling concept drift in medical applications: Importance, challenges and solutions , 2010, 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS).

[19]  Julio Gonzalo,et al.  Overview of RepLab 2012: Evaluating Online Reputation Management Systems , 2012, CLEF.

[20]  Ramayya Krishnan,et al.  HYDRA: large-scale social identity linkage via heterogeneous behavior modeling , 2014, SIGMOD Conference.

[21]  Yong Yu,et al.  Video summarization via transferrable structured learning , 2011, WWW.

[22]  Jianfu Chen,et al.  Cost-sensitive learning for large-scale hierarchical classification , 2013, CIKM.

[23]  Lei Tang,et al.  Large scale multi-label classification via metalabeler , 2009, WWW '09.

[24]  Claudio Gentile,et al.  Incremental Algorithms for Hierarchical Classification , 2004, J. Mach. Learn. Res..

[25]  Ko Fujimura,et al.  Tweet classification by data compression , 2011, DETECT '11.

[26]  Maarten de Rijke,et al.  Feeding the Second Screen: Semantic Linking based on Subtitles , 2013, DIR.

[27]  Thorsten Joachims,et al.  Predicting diverse subsets using structural SVMs , 2008, ICML '08.

[28]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[29]  Tibério S. Caetano,et al.  Submodular Multi-Label Learning , 2011, NIPS.

[30]  Huan Liu,et al.  Handling concept drifts in incremental learning with support vector machines , 1999, KDD '99.

[31]  Hakan Ferhatosmanoglu,et al.  Short text classification in twitter to improve information filtering , 2010, SIGIR.

[32]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[33]  Robert E. Schapire,et al.  Hierarchical multi-label prediction of gene function , 2006, Bioinform..

[34]  Christopher Meek,et al.  Improving Similarity Measures for Short Segments of Text , 2007, AAAI.

[35]  Ko Fujimura,et al.  Improving tweet stream classification by detecting changes in word probability , 2012, SIGIR '12.

[36]  Juho Rousu,et al.  Kernel-Based Learning of Hierarchical Multilabel Classification Models , 2006, J. Mach. Learn. Res..

[37]  Chengqi Zhang,et al.  TCSST: transfer classification of short & sparse text using external data , 2012, CIKM.

[38]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[39]  Hongjun Lu,et al.  Classifying Text Streams in the Presence of Concept Drifts , 2004, PAKDD.

[40]  Danushka Bollegala,et al.  Measuring semantic similarity between words using web search engines , 2007, WWW '07.

[41]  Thorsten Joachims,et al.  Training structural SVMs when exact inference is intractable , 2008, ICML '08.

[42]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[43]  Yoram Singer,et al.  Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..

[44]  Susumu Horiguchi,et al.  Learning to classify short and sparse text & web with hidden topics from large-scale data collections , 2008, WWW.

[45]  James T. Kwok,et al.  MultiLabel Classification on Tree- and DAG-Structured Hierarchies , 2011, ICML.