Water Reflection Detection Using a Flip Invariant Shape Detector

Water reflection detection is a tough task in computer vision, since the reflection is distorted by ripples irregularly. This paper proposes an effective method to detect water reflections. We introduce a descriptor that is not only invariant to scales, rotations and affine transformations, but also tolerant to the flip transformation and even non-rigid distortions, such as ripple effects. We analyze the structure of our descriptor and show how it outperforms the existing mirror feature descriptors in the context of water reflection. The experimental results demonstrate that our method is able to detect the water reflections.

[1]  Xiaochun Cao,et al.  MIFT: A Mirror Reflection Invariant Feature Descriptor , 2009, ACCV.

[2]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[4]  Hayko Riemenschneider,et al.  Finding Stable Extremal Region Boundaries , 2009 .

[5]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[6]  Yanxi Liu,et al.  Local facial asymmetry for expression classification , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[7]  Yanxi Liu,et al.  Performance evaluation of state-of-the-art discrete symmetry detection algorithms , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[10]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[12]  Yanxi Liu,et al.  Curved glide-reflection symmetry detection , 2009, CVPR.

[13]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.

[14]  Michel Couprie,et al.  Building the Component Tree in Quasi-Linear Time , 2006, IEEE Transactions on Image Processing.

[15]  Benoit M. Macq,et al.  Fast and automatic tumoral area localisation using symmetry , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[16]  Andreas Kuehnle,et al.  Symmetry-based recognition of vehicle rears , 1991, Pattern Recognit. Lett..