Asymmetric polygons with maximum area

We say that a polygon inscribed in the circle is asymmetric if it contains no two antipodal points being the endpoints of a diameter. Given $n$ diameters of a circle and a positive integer $k<n$, this paper addresses the problem of computing a maximum area asymmetric $k$-gon having as vertices $k<n$ endpoints of the given diameters. The study of this type of polygons is motivated by ethnomusiciological applications.

[1]  Marc Chemillier,et al.  Ethnomusicology, Ethnomathematics. The Logic Underlying Orally Transmitted Artistic Practices , 2002 .

[2]  Godfried T. Toussaint,et al.  Mathematical Features for Recognizing Preference in Sub-saharan African Traditional Rhythm Timelines , 2005, ICAPR.

[3]  B. Grünbaum Measures of symmetry for convex sets , 1963 .

[4]  Godfried T. Toussaint,et al.  Computational geometric aspects of rhythm, melody, and voice-leading , 2010, Comput. Geom..

[5]  Godfried T. Toussaint,et al.  El Compás Flamenco: A Phylogenetic Analysis , 2004 .

[6]  Christopher Raphael,et al.  Music and Operations Research , 2010 .

[7]  Pierre Hansen,et al.  Extremal problems for convex polygons , 2005, J. Glob. Optim..

[8]  K. Reinhardt Extremale Polygone gegebenen Durchmessers. , 1922 .

[9]  David Locke,et al.  African Polyphony and Polyrhythm: Musical Structure and Methodology , 1992 .

[10]  Raymond Boyd,et al.  African Polyphony and Polyrhythm: Musical Structure and Methodology , 1991 .

[11]  Charlotte Truchet,et al.  Computation of words satisfying the "rhythmic oddity property" (after Simha Arom's works) , 2003, Inf. Process. Lett..

[12]  David Rappaport Maximal Area Sets and Harmony , 2007, Graphs Comb..

[13]  Brian J. McCartin Prelude to Musical Geometry , 1998 .

[14]  Michael J. Mossinghoff Isodiametric Problems for Polygons , 2006, Discret. Comput. Geom..

[15]  Esther M. Arkin,et al.  Convex Transversals , 2011, WADS.

[16]  Ronald L. Graham,et al.  The Largest Small Hexagon , 1975, J. Comb. Theory, Ser. A.

[17]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[18]  Pierre Hansen,et al.  The Largest Small Octagon , 2001, J. Comb. Theory, Ser. A.

[19]  Carlos Ochoa,et al.  Characterization of Extremal Antipodal Polygons , 2015, Graphs Comb..

[20]  Carlos Ochoa,et al.  Extremal antipodal polygons and polytopes , 2013, ArXiv.

[21]  Alexander Pilz,et al.  New results on stabbing segments with a polygon , 2015, Comput. Geom..

[22]  Daniel Schell,et al.  Optimality in musical melodies and harmonic progressions: The travelling musician , 2002, Eur. J. Oper. Res..

[23]  Alexander Pilz,et al.  New Results on Stabbing Segments with a Polygon , 2013, CIAC.

[24]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[25]  Marek Lassak Approximation of convex bodies by axially symmetric bodies , 2002 .

[26]  David P. Dobkin,et al.  Finding Extremal Polygons , 1985, SIAM J. Comput..

[27]  Luca Weisz,et al.  Ethnomathematics A Multicultural View Of Mathematical Ideas , 2016 .

[28]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .