A Note on Multigrid Methods for (Multilevel)Structured-plus-banded Uniformly BoundedHermitian Positive Definite Linear Systems

In the past few years a lot of attention has been paid in the multigrid solution of multilevel structured (Toeplitz, circulants, Hartley, sine (τ class) and cosine algebras) linear systems, in which the coefficient matrix is banded in a multilevel sense and Hermitian positive definite. In the present paper we provide some theoretical results on the optimality of an existing multigrid procedure, when applied to a properly related algebraic problem. In particular, we propose a modification of previously devised multigrid procedures in order to handle Hermitian positive definite structured-plus-banded uniformly bounded linear systems, arising when an indefinite, and not necessarily structured, banded part is added to the original coefficient matrix. In this context we prove the Two-Grid method optimality. In such a way, several linear systems arising from the approximation of integro-differential equations with various boundary conditions can be efficiently solved in linear time (with respect to the size of the algebraic problem). Some numerical experiments are presented and discussed, both with respect to Two-Grid and multigrid procedures.

[1]  Raymond H. Chan,et al.  Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems , 1998, SIAM J. Sci. Comput..

[2]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[3]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[4]  Stefano Serra Capizzano,et al.  Two‐grid methods for banded linear systems from DCT III algebra , 2005, Numer. Linear Algebra Appl..

[5]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[6]  Xiao-Qing Jin,et al.  Convergence of the Multigrid Method of Ill-conditioned Block Toeplitz Systems , 2001 .

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[9]  Michael K. Ng,et al.  Splitting iterations for circulant‐plus‐diagonal systems , 2005, Numer. Linear Algebra Appl..

[10]  S. Serra,et al.  Multi-iterative methods , 1993 .

[11]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[12]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[13]  Raymond H. Chan,et al.  Application of multigrid techniques to image restoration problems , 2002, SPIE Optics + Photonics.

[14]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[15]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[16]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[17]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[18]  S. Capizzano Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear , 2002 .

[19]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[20]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[21]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[22]  Thomas Huckle,et al.  Multigrid Preconditioning and Toeplitz Matrices , 2002 .

[23]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[24]  Stefano Serra Capizzano,et al.  Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate , 2004, Theor. Comput. Sci..

[25]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[26]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[27]  O. Axelsson Iterative solution methods , 1995 .

[28]  Rudolf A. Römer,et al.  The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1999, SIAM J. Sci. Comput..

[29]  Michael K. Ng,et al.  Numerical behaviour of multigrid methods for symmetric Sinc–Galerkin systems , 2005, Numer. Linear Algebra Appl..

[30]  C. Tablino Possio,et al.  V-cycle Optimal Convergence for DCT-III Matrices , 2007, 0704.1980.

[31]  M. Ng,et al.  Cosine transform preconditioners for high resolution image reconstruction , 2000 .

[32]  Stefano Serra Capizzano,et al.  How to prove that a preconditioner cannot be superlinear , 2003, Math. Comput..

[33]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .