Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part II: Thermodynamics and implications for source term estimations of nuclear waste disposal

Abstract The results of comprehensive solubility experiments with Np(V) in dilute to concentrated CaCl2 solutions which included the spectroscopic investigation of the predominant aqueous Np(V) species and the thorough analysis of the solubility controlling Np(V) solid phases [1](Fellhauer, D., Rothe, J., Altmaier, M., Neck, V., Runke, J., Wiss, T., Fanghänel, Th., Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part I: Experimental solubility (Radiochim. Acta, DOI 10.1515/ract-2015-2489), in the following referred to as “Part I”), showed that the concentration of Np(V) in these systems is limited by equilibrium reactions between previously unknown (qua)ternary solid compounds, CaNpO2(OH)2.6Cl0.4 · 2H2O(s) (I), Ca0.5NpO2(OH)2 · 1.3H2O(s) (II) and Ca0.5NpO2(OH)2(s) (III), and ternary aqueous complexes of Np(V) with the general formulae Cax[NpO2(OH)2]2x–1, Cay[NpO2(OH)5]2y–4 with y ≈ 2.4 ± 1.5 (EXAFS result) and innersphere Np(V) chloro complexes, Caz[NpO2Cl]2z+ with z = 0 and 1 (EXAFS result). A systematic thermodynamic evaluation of the experimental solubility data based on the specific ion interaction theory (SIT) and the Pitzer approach is performed. The stoichiometries of the ternary hydrolysis complexes are assessed as Ca[NpO2(OH)2]+ and Ca3[NpO2(OH)5]2+. The corresponding thermodynamic solubility and complex formation constants at I = 0 as well as the ion interaction parameters (SIT and Pitzer) were derived yielding a comprehensive geochemical model for the Np(V) solubility behavior in pH neutral and alkaline CaCl2 solutions over a large range of ionic strengths. This significantly improves source term estimations for scenarios with calcium dominated aquatic systems. The principally different behavior of Np(V) in NaCl and CaCl2 solutions is highlighted, and the impact of the new findings on geochemical modelling of systems relevant for nuclear waste disposal is discussed.

[1]  Kenneth S. Pitzer,et al.  Activity Coefficients in Electrolyte Solutions , 2017 .

[2]  T. Fanghänel,et al.  Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part I: Experimental results , 2016 .

[3]  X. Gaona,et al.  Thermodynamic description of Np(VI) solubility, hydrolysis, and redox behavior in dilute to concentrated alkaline NaCl solutions , 2013 .

[4]  X. Gaona,et al.  Recent Advances in Aqueous Actinide Chemistry and Thermodynamics , 2013 .

[5]  T. Fanghänel,et al.  Recent advances in aqueous actinide chemistry and thermodynamics. , 2013, Chemical reviews.

[6]  Klaus-Jürgen Röhlig,et al.  Chemie im Endlagersystem: Endlagerung radioaktiver Abfälle , 2012 .

[7]  T. Fanghänel,et al.  Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes , 2009 .

[8]  T. Fanghänel,et al.  Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes , 2008 .

[9]  H. Wanner Solubility data in radioactive waste disposal , 2007 .

[10]  C. Landesman,et al.  Reproducibility of the uptake of U(VI) onto degraded cement pastes and calcium silicate hydrate phases , 2004 .

[11]  Horst-Jürgen Herbert,et al.  Long-Term Leaching Experiments of Full-Scale Cemented Waste Forms: Experiments and Modeling , 2000 .

[12]  W. J. Frederick,et al.  Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25.degree.C. 1. Single salt parameters , 1988 .

[13]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[14]  Volker Metz,et al.  Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt – Leaching experiments and thermodynamic simulations , 2013 .

[15]  K. Dardenne,et al.  Np(V) solubility and solid phase transformation in dilute to concentrated NaCl solutions , 2011 .

[16]  T. Fanghänel,et al.  Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series , 2010 .

[17]  L. Öhman,et al.  Chemical Thermodynamics, Volume 7: Chemical Thermodynamics of Selenium , 2005 .

[18]  G. Bernhard,et al.  Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species , 2001 .

[19]  W. R. Salaneck,et al.  Estimation of the Pitzer Equation Parameters for Aqueous Complexes. A Case Study for Uranium at 298.15 K and 1 atm. , 1998 .

[20]  J. I. Kim,et al.  Thermodynamics of Neptunium(Y) in Concentrated Salt Solutions: Chloride Complexation and Ion Interaction (Pitzer) Parameters for the NpO+2 Ion , 1995 .

[21]  J. I. Kim,et al.  Thermodynamics of Neptunium(V) in Concentrated Salt Solutions: II. Ion Interaction (Pitzer) Parameters for Np(V) Hydrolysis Species and Carbonate Complexes , 1995 .

[22]  B. Grambow,et al.  Solubility Equilibria in the U(VI)-Ca-K-Cl-H2O System: Transformation of Schoepite into Becquerelite and Compreignacite , 1994 .

[23]  U. R. Berner,et al.  Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment , 1992 .

[24]  J. I. Kim,et al.  Solubility and Hydrolysis Behaviour of Neptunium(V) , 1992 .

[25]  L Ciavatta,et al.  THE SPECIFIC INTERACTION THEORY IN EVALUATING IONIC EQUILIBRIA , 1980 .