Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part II: Thermodynamics and implications for source term estimations of nuclear waste disposal
暂无分享,去创建一个
[1] Kenneth S. Pitzer,et al. Activity Coefficients in Electrolyte Solutions , 2017 .
[2] T. Fanghänel,et al. Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part I: Experimental results , 2016 .
[3] X. Gaona,et al. Thermodynamic description of Np(VI) solubility, hydrolysis, and redox behavior in dilute to concentrated alkaline NaCl solutions , 2013 .
[4] X. Gaona,et al. Recent Advances in Aqueous Actinide Chemistry and Thermodynamics , 2013 .
[5] T. Fanghänel,et al. Recent advances in aqueous actinide chemistry and thermodynamics. , 2013, Chemical reviews.
[6] Klaus-Jürgen Röhlig,et al. Chemie im Endlagersystem: Endlagerung radioaktiver Abfälle , 2012 .
[7] T. Fanghänel,et al. Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes , 2009 .
[8] T. Fanghänel,et al. Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes , 2008 .
[9] H. Wanner. Solubility data in radioactive waste disposal , 2007 .
[10] C. Landesman,et al. Reproducibility of the uptake of U(VI) onto degraded cement pastes and calcium silicate hydrate phases , 2004 .
[11] Horst-Jürgen Herbert,et al. Long-Term Leaching Experiments of Full-Scale Cemented Waste Forms: Experiments and Modeling , 2000 .
[12] W. J. Frederick,et al. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25.degree.C. 1. Single salt parameters , 1988 .
[13] N. Møller,et al. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .
[14] Volker Metz,et al. Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt – Leaching experiments and thermodynamic simulations , 2013 .
[15] K. Dardenne,et al. Np(V) solubility and solid phase transformation in dilute to concentrated NaCl solutions , 2011 .
[16] T. Fanghänel,et al. Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series , 2010 .
[17] L. Öhman,et al. Chemical Thermodynamics, Volume 7: Chemical Thermodynamics of Selenium , 2005 .
[18] G. Bernhard,et al. Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species , 2001 .
[19] W. R. Salaneck,et al. Estimation of the Pitzer Equation Parameters for Aqueous Complexes. A Case Study for Uranium at 298.15 K and 1 atm. , 1998 .
[20] J. I. Kim,et al. Thermodynamics of Neptunium(Y) in Concentrated Salt Solutions: Chloride Complexation and Ion Interaction (Pitzer) Parameters for the NpO+2 Ion , 1995 .
[21] J. I. Kim,et al. Thermodynamics of Neptunium(V) in Concentrated Salt Solutions: II. Ion Interaction (Pitzer) Parameters for Np(V) Hydrolysis Species and Carbonate Complexes , 1995 .
[22] B. Grambow,et al. Solubility Equilibria in the U(VI)-Ca-K-Cl-H2O System: Transformation of Schoepite into Becquerelite and Compreignacite , 1994 .
[23] U. R. Berner,et al. Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment , 1992 .
[24] J. I. Kim,et al. Solubility and Hydrolysis Behaviour of Neptunium(V) , 1992 .
[25] L Ciavatta,et al. THE SPECIFIC INTERACTION THEORY IN EVALUATING IONIC EQUILIBRIA , 1980 .