Robinson Stability of Parametric Constraint Systems via Variational Analysis

This paper investigates a well-posedness property of parametric constraint systems named here Robinson stability. Based on advanced tools of variational analysis and generalized differentiation, we derive first-order and second-order conditions for this property under minimal constraint qualifications and establish relationships of Robinson stability with other well-posedness properties in variational analysis and optimization. The results obtained are applied to robust Lipschitzian stability of parametric variational systems.

[1]  Helmut Gfrerer,et al.  On Lipschitzian Properties of Implicit Multifunctions , 2016, SIAM J. Optim..

[2]  BORIS S. MORDUKHOVICH,et al.  Coderivative Analysis of Quasi-variational Inequalities with Applications to Stability and Optimization , 2007, SIAM J. Optim..

[3]  Jen-Chih Yao,et al.  Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions , 2010 .

[4]  Aram V. Arutyunov On implicit function theorems at abnormal points , 2010 .

[5]  B. S. Mordukhovich,et al.  Full Lipschitzian and Hölderian Stability in Optimization with Applications to Mathematical Programming and Optimal Control , 2014, SIAM J. Optim..

[6]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[7]  S. M. Robinson Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .

[8]  Helmut Gfrerer,et al.  First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..

[9]  Helmut Gfrerer,et al.  Optimality Conditions for Disjunctive Programs Based on Generalized Differentiation with Application to Mathematical Programs with Equilibrium Constraints , 2014, SIAM J. Optim..

[10]  D. Drusvyatskiy,et al.  Second-order growth, tilt stability, and metric regularity of the subdifferential , 2013, 1304.7385.

[11]  Helmut Gfrerer,et al.  Lipschitz and Hölder stability of optimization problems and generalized equations , 2016, Math. Program..

[12]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[13]  Fernando M. Lobo Pereira,et al.  Second-Order Necessary Optimality Conditions for Problems Without A Priori Normality Assumptions , 2006, Math. Oper. Res..

[14]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[15]  Boris S. Mordukhovich,et al.  Complete Characterizations of Tilt Stability in Nonlinear Programming under Weakest Qualification Conditions , 2015, SIAM J. Optim..

[16]  Vaithilingam Jeyakumar,et al.  Solution Stability of Nonsmooth Continuous Systems with Applications to Cone-Constrained Optimization , 2004, SIAM J. Optim..

[17]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Subregularity and Second-Order Optimality Conditions for a Class of Nonsmooth Mathematical Programs , 2012 .

[18]  Alexander D. Ioffe,et al.  On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .

[19]  Xi Yin Zheng,et al.  Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces , 2007, SIAM J. Optim..

[20]  J. Borwein Stability and regular points of inequality systems , 1986 .

[21]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[22]  Boris S. Mordukhovich,et al.  Full Stability in Finite-Dimensional Optimization , 2015, Math. Oper. Res..

[23]  A. Kruger Error bounds and metric subregularity , 2014, 1405.1130.

[24]  Adam B. Levy,et al.  Stability of Locally Optimal Solutions , 1999, SIAM J. Optim..

[25]  Boris S. Mordukhovich,et al.  Failure of Metric Regularity for Major Classes of Variational Systems , 2008 .

[26]  J. Penot Second-Order Conditions for Optimization Problems with Constraints , 1999 .

[27]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[28]  Aram V. Arutyunov,et al.  Directional Regularity and Metric Regularity , 2007, SIAM J. Optim..

[29]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[30]  Huynh van Ngai,et al.  Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..