Modelling of slope failure by a material instability mechanism

Abstract Slope stability analysis, based on the continuum mechanics assumption and finite element analysis, generally uses a plasticity criterion to describe the failure mechanism. In this paper we model the failure phenomenon using a material stability criterion based on the sign of the second order work. After a brief and critical review of the classical methods for slope stability analysis, we study a case of material instability experimentally and analytically. Homogeneous stress–strain problems are then investigated ising a non-linear constitutive model. It is shown that unstable stress–strain states are reached strictly inside the plastic limit condition (set of admissible stresses). Theses analyses are then extended and applied to sandy slope problems solved by FEM.

[1]  Richard A. Regueiro,et al.  A finite element model of localized deformation in frictional materials taking a strong discontinuity approach , 1999 .

[2]  J. Mandel Conditions de Stabilité et Postulat de Drucker , 1966 .

[3]  Félix Darve,et al.  Constitutive modelling and instabilities of soil behaviour , 1995 .

[4]  M. Manzari,et al.  SIGNIFICANCE OF SOIL DILATANCY IN SLOPE STABILITY ANALYSIS. TECHNICAL NOTE , 2000 .

[5]  Poul V. Lade,et al.  Closure of "Static Instability and Liquefaction of Loose Fine Sandy Slopes" , 1993 .

[6]  J. M. Duncan State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes , 1996 .

[7]  D. Muir Wood,et al.  Localisation and bifurcation theory for soils and rocks , 1998 .

[8]  Davide Bigoni,et al.  Uniqueness and localization—I. Associative and non-associative elastoplasticity , 1991 .

[9]  R. D. Espinoza,et al.  General framework for stability analysis of slopes , 1992 .

[10]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[11]  Mourad Meghachou Stabilité des sables lâches : essais et modélisations , 1993 .

[12]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[13]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[14]  Michael Ortiz,et al.  Finite element analysis of strain localization in frictional materials , 1989 .

[15]  Adel S. Saada,et al.  Constitutive equations for granular non-cohesive soils , 1989 .

[16]  Donald W. Taylor,et al.  Fundamentals of soil mechanics , 1948 .

[17]  S. Imposimato,et al.  An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand , 1998 .

[18]  Félix Darve,et al.  Instabilities in granular materials and application to landslides , 2000 .

[19]  J. Rice Localization of plastic deformation , 1976 .

[20]  R. Nova,et al.  CONTROLLABILITY OF THE INCREMENTAL RESPONSE OF SOIL SPECIMENS SUBJECTED TO ARBITRARY LOADING PROGRAMMES , 1994 .

[21]  M J Keedwell,et al.  Rheology and soil mechanics , 1984 .

[22]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[23]  R. Nova,et al.  Theoretical investigation of the undrained stability of shallow submerged slopes , 1995 .

[24]  Serge Leroueil,et al.  Remarks on the validity of stability analyses , 1980 .

[25]  Wai-Fah Chen Limit Analysis and Soil Plasticity , 1975 .

[26]  J. Z. Zhu,et al.  The finite element method , 1977 .

[27]  Mohamed Rouainia,et al.  The geotechnics of hard soils-soft rocks , 1998 .

[28]  Ronaldo I. Borja,et al.  FREE BOUNDARY, FLUID FLOW, AND SEEPAGE FORCES IN EXCAVATIONS , 1992 .

[29]  Tamotsu Matsui,et al.  Finite element slope stability analysis by shear strength reduction technique , 1992 .

[30]  D. V. Griffiths,et al.  SLOPE STABILITY ANALYSIS BY FINITE ELEMENTS , 1999 .

[31]  Roberto Nova,et al.  Stability problems related to static liquefaction of loose sand , 1994 .