Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: effect on ion and maltopentaose transport.

[1]  M. Winterhalter,et al.  Reconstitution of General Diffusion Pores from Bacterial Outer Membranes , 2005 .

[2]  Roland Benz,et al.  Mechanism of sugar transport through the sugar-specific LamB channel ofEscherichia coli outer membrane , 2005, The Journal of Membrane Biology.

[3]  G. Schwarz,et al.  On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. , 2003, Biophysical journal.

[4]  R. Benz,et al.  Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics. , 2002, Biophysical journal.

[5]  Ansgar Philippsen,et al.  Sugar Transport through Maltoporin of Escherichia coli: Role of the Greasy Slide , 2002, Journal of bacteriology.

[6]  R. Benz,et al.  Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (Maltoporin) channel of Escherichia coli. I. Effect on ion transport. , 2002, Biophysical journal.

[7]  S. Bezrukov,et al.  Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. , 2000, Physical review letters.

[8]  M. Winterhalter,et al.  Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli. , 2000, European journal of biochemistry.

[9]  M. Hofnung,et al.  In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K‐12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding , 1999, Molecular Microbiology.

[10]  R. Benz,et al.  Study of Sugar Binding to the Sucrose-specific ScrY Channel of Enteric Bacteria Using Current Noise Analysis , 1998, The Journal of Membrane Biology.

[11]  R. Benz,et al.  1/f-Noise of Open Bacterial Porin Channels , 1997, The Journal of Membrane Biology.

[12]  G. Schulz,et al.  Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. , 1997, Journal of molecular biology.

[13]  R. Benz,et al.  Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium. , 1996, Journal of molecular biology.

[14]  R. Dutzler,et al.  Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. , 1996, Structure.

[15]  R. Benz,et al.  The deletion of 70 amino acids near the N‐terminal end of the sucrose‐specific porin ScrY causes its functional similarity to LamB in vivo and in vitro , 1995, Molecular microbiology.

[16]  R. Benz,et al.  Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise , 1995, The Journal of general physiology.

[17]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[18]  R. Benz,et al.  Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. , 1994, Biophysical journal.

[19]  K. Schmid,et al.  The sugar‐specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate‐specific porins , 1991, Molecular microbiology.

[20]  J. Lengeler,et al.  A sugar‐specific porin, ScrY, is involved in sucrose uptake in enteric bacteria , 1991, Molecular microbiology.

[21]  R. Benz,et al.  Permeation of hydrophilic molecules through the outer membrane of gram‐negativ bacteria , 1988 .

[22]  T. Ferenci,et al.  Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure , 1988, Journal of bacteriology.

[23]  R. Benz,et al.  Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. , 1988, The Journal of biological chemistry.

[24]  S. Freundlieb,et al.  Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli. Characterization of LamB as a specific and saturable channel for maltooligosaccharides. , 1988, The Journal of biological chemistry.

[25]  J. Lengeler,et al.  Plasmid‐mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400 , 1988, Molecular microbiology.

[26]  R. Benz,et al.  Mechanism of ion transport through the anion-selective channel of the Pseudomonas aeruginosa outer membrane , 1987, The Journal of general physiology.

[27]  R. Benz,et al.  Role of lysines in ion selectivity of bacterial outer membrane porins. , 1986, Biochimica et biophysica acta.

[28]  R. Benz,et al.  Pore formation by LamB of Escherichia coli in lipid bilayer membranes , 1986, Journal of bacteriology.

[29]  H. Nikaido,et al.  Molecular basis of bacterial outer membrane permeability. , 1985, Microbiological reviews.

[30]  W. Boos,et al.  Maltose-binding protein does not modulate the activity of maltoporin as a general porin in Escherichia coli , 1985, Journal of bacteriology.

[31]  R. Schmitt,et al.  Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12 , 1982, Journal of bacteriology.

[32]  R. Hancock Aminoglycoside uptake and mode of action--with special reference to streptomycin and gentamicin. I. Antagonists and mutants. , 1981, The Journal of antimicrobial chemotherapy.

[33]  Louis J. DeFelice,et al.  Introduction to membrane noise , 1981 .

[34]  T. Beveridge Ultrastructure, chemistry, and function of the bacterial wall. , 1981, International review of cytology.

[35]  J. Tommassen,et al.  Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase , 1980, Journal of bacteriology.

[36]  T. Ferenci,et al.  Lambda Receptor in the Outer Membrane of Escherichia coli as a Binding Protein for Maltodextrins and Starch Polysaccharides , 1980, Journal of bacteriology.

[37]  R. Benz,et al.  Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. , 1978, Biochimica et biophysica acta.

[38]  Winfried Boos,et al.  Maltose Transport in Escherichia coli K12 , 1976 .

[39]  E Wanke,et al.  Channel noise in nerve membranes and lipid bilayers , 1975, Quarterly Reviews of Biophysics.