Integration of sonar and stereo range data using a grid-based representation

The authors use occupancy grids to combine range information from sonar and one-dimensional stereo into a two-dimensional map of the vicinity of a robot. Each cell in the map contains a probabilistic estimate of whether it is empty or occupied by an object in the environment. These estimates are obtained from sensor models that describe the uncertainty in the range data. A Bayesian estimation scheme is applied to update the current map using successive range readings from each sensor. The occupancy grid representation is simple to manipulate, treats different sensors uniformly, and models uncertainty in the sensor data and in the robot position. It also provides a basis for motion planning and creation of more abstract object descriptions.<<ETX>>

[1]  Ralf Kories,et al.  Stereo Ranging with Verging Cameras , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Alberto Elfes A sonar-based mapping and navigation system , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[3]  Charles Elving Thorpe,et al.  Fido: vision and navigation for a robot rover , 1984 .

[4]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[5]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[6]  Takeo Kanade,et al.  CMU strategic computing vision project report : 1984 to 1985 , 1986 .

[7]  Michael Drumheller,et al.  Mobile Robot Localization Using Sonar , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Ben P. Wise An experimental comparison of uncertain inference systems (artificial intelligence, probability, entropy) , 1986 .

[9]  James L. Crowley Dynamic world modeling for an intelligent mobile robot using a rotating ultra-sonic ranging device , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[12]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[14]  V. Rich Personal communication , 1989, Nature.

[15]  Peter C. Cheeseman,et al.  In Defense of Probability , 1985, IJCAI.

[16]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[17]  David J. Kriegman,et al.  A Mobile Robot: Sensing, Planning and Locomotion , 1990, Autonomous Robot Vehicles.

[18]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[19]  Ellen Walker,et al.  A framework for representing & reasoning about 3-D objects , 1988 .

[20]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[21]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[22]  W. K. Stewart A Model-Based Approach to 3-D Imaging and Mapping Underwater , 1990 .

[23]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[24]  Takeo Kanade,et al.  A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision , 1988, AI Mag..

[25]  Takeo Kanade,et al.  Vision and Navigation for the Carnegie-Mellon Navlab , 1987 .

[26]  D. Dowling,et al.  A functional vehicle for autonomous mobile robot research , 1984 .