High-performance Al-doped Cu/ZnO catalysts for CO2 hydrogenation to methanol: MIL-53(Al) source-enabled oxygen vacancy engineering and related promoting mechanisms

[1]  Xuezhong He,et al.  Shifting CO2 hydrogenation from producing CO to CH3OH by engineering defect structures of Cu/ZrO2 and Cu/ZnO catalysts , 2023, Chemical Engineering Journal.

[2]  Zhou‐jun Wang,et al.  Boosting Co2 Hydrogenation to Methanol by Adding Trace Amount of AU into Cu/Zno Catalysts , 2023, SSRN Electronic Journal.

[3]  P. Reubroycharoen,et al.  Alcohol Solvent Assisted Synthesis of Metallic and Metal Oxide Catalysts: As-Prepared Cu/ZnO/Al2O3 Catalysts for Low-Temperature Methanol Synthesis with an Ultrahigh Yield , 2023, ACS Catalysis.

[4]  Shuliang Yang,et al.  A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol , 2022, Journal of Catalysis.

[5]  Congming Li,et al.  The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol , 2022, Applied Catalysis A: General.

[6]  Y. Kolen’ko,et al.  Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material , 2022, Chemistry of materials : a publication of the American Chemical Society.

[7]  Junling Lu,et al.  In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO1-x/Cu Interfaces for Methanol Synthesis from CO2. , 2022, Angewandte Chemie.

[8]  C. Su,et al.  PtCu@Ir-PCN-222: Synergistic Catalysis of Bimetallic PtCu Nanowires in Hydrosilane-Concentrated Interspaces of an Iridium(III)–Porphyrin-Based Metal–Organic Framework , 2022, ACS Catalysis.

[9]  Maoshuai Li,et al.  Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol , 2022, Journal of Energy Chemistry.

[10]  Jinhua Ye,et al.  Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction , 2021 .

[11]  C. Mondelli,et al.  Atomic Pd-promoted ZnZrO solid solution catalyst for CO2 hydrogenation to methanol , 2021, Applied Catalysis B: Environmental.

[12]  Shan Tang,et al.  The promoting role of Ga in ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol , 2021, Journal of Catalysis.

[13]  F. Dong,et al.  Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO2 for Efficient CO2 Photoreduction. , 2021, ACS nano.

[14]  Xinwen Guo,et al.  Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation , 2021, Molecular Catalysis.

[15]  Xiaolong Wang,et al.  High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy , 2021, Journal of Energy Chemistry.

[16]  Hongbo Zhang,et al.  Zeolite-Encapsulated Ultrasmall Cu/ZnOx Nanoparticles for the Hydrogenation of CO2 to Methanol. , 2021, ACS applied materials & interfaces.

[17]  H. Wan,et al.  In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation , 2021 .

[18]  Jienan Chen,et al.  Structure-Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2. , 2021, ACS applied materials & interfaces.

[19]  G. Centi,et al.  Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review , 2020 .

[20]  C. Cramer,et al.  Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol , 2020, Nature Communications.

[21]  Jun Luo,et al.  Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation , 2020, Nature Communications.

[22]  Kaihang Sun,et al.  Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst , 2020 .

[23]  Qingyuan Yang,et al.  A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation , 2020 .

[24]  Q. Fu,et al.  CO2 Reforming of Methane over a Highly Dispersed Ni/Mg–Al–O Catalyst Prepared by a Facile and Green Method , 2020 .

[25]  Y. Yoneyama,et al.  Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method , 2020 .

[26]  Jinhua Ye,et al.  Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. , 2020, Angewandte Chemie.

[27]  O. Safonova,et al.  CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3 , 2020, Journal of Catalysis.

[28]  J. Hazemann,et al.  Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO2 to Methanol , 2020 .

[29]  Chunlei Huang,et al.  Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions , 2020 .

[30]  Shaomin Liu,et al.  Cu/ZnO Catalysts Derived from Bimetallic Metal-Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability. , 2020, Small.

[31]  Tao Zhang,et al.  State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. , 2020, Chemical Society reviews.

[32]  Xiao Jiang,et al.  Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. , 2020, Chemical reviews.

[33]  Xinlin Hong,et al.  In Situ Generation of the Cu@3D-ZrOx Framework Catalyst for Selective Methanol Synthesis from CO2/H2 , 2020 .

[34]  Shengfu Ji,et al.  A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane , 2019 .

[35]  Simson Wu,et al.  CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu–LaOx interfaces , 2019, Applied Catalysis B: Environmental.

[36]  T. Nagao,et al.  Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts , 2019, Applied Catalysis B: Environmental.

[37]  Zhongwei Chen,et al.  Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance , 2019, Applied Catalysis B: Environmental.

[38]  Fangming Jin,et al.  Catalytic transfer hydrogenation of levulinate ester into γ-valerolactone over ternary Cu/ZnO/Al2O3 catalyst , 2019, Journal of Energy Chemistry.

[39]  Ping Liu,et al.  Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol , 2019, Nature Communications.

[40]  P. Camargo,et al.  Ni supported Ce0.9Sm0.1O2-δ nanowires: An efficient catalyst for ethanol steam reforming for hydrogen production , 2019, Fuel.

[41]  C. Shin,et al.  Roles of Structural Promoters for Direct CO2 Hydrogenation to Dimethyl Ether over Ordered Mesoporous Bifunctional Cu/M–Al2O3 (M = Ga or Zn) , 2018, ACS Catalysis.

[42]  M. Rezaei,et al.  Component ratio dependent Cu/Zn/Al structure sensitive catalyst in CO 2 /CO hydrogenation to methanol , 2018, Molecular Catalysis.

[43]  Suojiang Zhang,et al.  Highly Active Ni-Based Catalyst Derived from Double Hydroxides Precursor for Low Temperature CO2 Methanation , 2018, Industrial & Engineering Chemistry Research.

[44]  Xinlin Hong,et al.  Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts , 2018 .

[45]  Chongli Zhong,et al.  Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture , 2018 .

[46]  Yulei Zhu,et al.  Insights into influence of nanoparticle size and metal–support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation , 2017 .

[47]  H. Wan,et al.  New Insights into the Role of Al2 O3 in the Promotion of CuZnAl Catalysts: A Model Study. , 2017, Chemistry.

[48]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[49]  Hua Wang,et al.  Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane , 2017 .

[50]  A. Urakawa,et al.  CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. , 2017, Angewandte Chemie.

[51]  G. Somorjai,et al.  Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. , 2016, Nano letters.

[52]  P. D. de Jongh,et al.  Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis , 2016, Nature Communications.

[53]  S. Sahebdelfar,et al.  Preparation of high performance nano-sized Cu/ZnO/Al2O3 methanol synthesis catalyst via aluminum hydrous oxide sol , 2016 .

[54]  I. Chorkendorff,et al.  Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis , 2016, Science.

[55]  Antonio J. Martín,et al.  Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. , 2016, Angewandte Chemie.

[56]  R. Schlögl,et al.  Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts , 2015 .

[57]  R. Schlögl,et al.  How to Prepare a Good Cu/ZnO Catalyst or the Role of Solid State Chemistry for the Synthesis of Nanostructured Catalysts , 2013 .

[58]  H. Arandiyan,et al.  Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane , 2013 .

[59]  W. Wang,et al.  Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. , 2013, Nanoscale.

[60]  R. Schlögl,et al.  Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO:Al. , 2013, Journal of the American Chemical Society.

[61]  Wang Xing-yi,et al.  Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts , 2009 .

[62]  G. Italiano,et al.  Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH , 2008 .

[63]  R. Schlögl,et al.  Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming—A comparative study , 2008 .

[64]  Francesco Frusteri,et al.  Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol , 2007 .

[65]  Z. Qu,et al.  Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol , 2023, Applied Catalysis B: Environmental.

[66]  F. Krumeich,et al.  Copper-zinc oxide interface as a methanol-selective structure in Cu-ZnO catalyst during catalytic hydrogenation of carbon dioxide to methanol , 2022, Catalysis Science & Technology.