Deep Carbon through Deep Time

For most of the history of science, data-driven discovery has been difficult and timeconsuming: a lifetime of meticulous data collection and thoughtful synthesis was required to recognize previously hidden, higher-dimensional trends in multivariate data. Recognition of processes such as biological evolution by natural selection (1,2), continental evolution by plate tectonics (3,4), atmospheric and ocean oxygenation by photosynthesis (5,6), and climate change (7,8) required decades of integrated data synthesis preceding the discovery and acceptance of critical Earth phenomena. However, we stand at the precipice of a unique opportunity: to dramatically accelerate scientific discovery by coupling hard-won data resources with advanced analytical and visualization techniques (9,10). Today, Earth and life sciences are generating a multitude of data resources in numerous subdisciplines. Integration and synthesis of these diverse data resources will lead to an abductive, data-driven approach to investigating Earth’s mineralogical and geochemical history, as well as the coevolution of the geosphere and biosphere (11–13). In this chapter, we examine applications of data science in deep carbon research through three “use cases.” The first example focuses on geochemical and mineralogical anomalies from a period in Earth history (~1.3 to 0.9 Ga) when the supercontinent Rodinia was being assembled from previously scattered continental blocks. The second case study examines the diversity and distribution of minerals, notably carbon-bearing minerals, through deep time from the contexts of mineral evolution, mineral ecology, and mineral network analysis. The third and most speculative use case considers ways to analyze and visualize data that relate microbial protein expression to growth environments – complex interconnections that may shed light on Earth’s coevolving microbial ecosystems and near-surface geochemical environments. In each example, discoveries related to Earth’s deep-time evolution have resulted from the analysis and visualization of large data resources fostered by the Deep Carbon Observatory (DCO).

[1]  R. Ernst Large Igneous Provinces , 2014, Encyclopedia of Geology.

[2]  A. Knoll,et al.  The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents , 2019, Earth-Science Reviews.

[3]  R. Creaser,et al.  Diamond ages from Victor (Superior Craton): Intra-mantle cycling of volatiles (C, N, S) during supercontinent reorganisation , 2018 .

[4]  Cin-Ty A. Lee,et al.  Deep mantle roots and continental emergence: implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion , 2018 .

[5]  M. Choukroun,et al.  Prospects for mineralogy on Titan , 2018 .

[6]  R. Hazen Titan mineralogy: A window on organic mineral evolution , 2018 .

[7]  N. Fierer,et al.  A global atlas of the dominant bacteria found in soil , 2018, Science.

[8]  W. Lieb,et al.  Functional sequencing read annotation for high precision microbiome analysis , 2017, Nucleic acids research.

[9]  A. Knoll,et al.  Geochemical and mineralogical evidence that Rodinian assembly was unique , 2017, Nature Communications.

[10]  S. Brune,et al.  Potential links between continental rifting, CO2 degassing and climate change through time , 2017, Nature Geoscience.

[11]  Paolo Manghi,et al.  Accessible, curated metagenomic data through ExperimentHub , 2017, Nature Methods.

[12]  M. Koike,et al.  Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada , 2017, Nature.

[13]  J. Baross,et al.  Environmental niches and metabolic diversity in Neoarchean lakes , 2017, Geobiology.

[14]  P. Falkowski,et al.  Metal availability and the expanding network of microbial metabolisms in the Archaean eon , 2017 .

[15]  Joshua J. Golden,et al.  Network analysis of mineralogical systems , 2017 .

[16]  Peter A. Cawood,et al.  Laurentia-Baltica-Amazonia relations during Rodinia assembly , 2017 .

[17]  C. Vetriani,et al.  Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans , 2017, eLife.

[18]  Crispin T. S. Little,et al.  Evidence for early life in Earth’s oldest hydrothermal vent precipitates , 2017, Nature.

[19]  R. Hazen,et al.  On the mineralogy of the “Anthropocene Epoch” , 2017 .

[20]  W. Fischer,et al.  Evolution of the global phosphorus cycle , 2016, Nature.

[21]  Yana Bromberg,et al.  fusionDB: assessing microbial diversity and environmental preferences via functional similarity networks , 2017, Nucleic Acids Res..

[22]  T. Oberthür,et al.  Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event , 2016 .

[23]  P. Falkowski,et al.  The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. , 2016, Annual review of microbiology.

[24]  Peter A. Cawood,et al.  Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles , 2016 .

[25]  A. Knoll,et al.  A bottom-up perspective on ecosystem change in Mesozoic oceans , 2016, Proceedings of the Royal Society B: Biological Sciences.

[26]  C. Vetriani,et al.  Diversity and Distribution of Prokaryotes within a Shallow-Water Pockmark Field , 2016, Front. Microbiol..

[27]  K. Wrighton,et al.  The bright side of microbial dark matter: lessons learned from the uncultivated majority. , 2016, Current opinion in microbiology.

[28]  Joshua J. Golden,et al.  Carbon mineral ecology: Predicting the undiscovered minerals of carbon , 2016 .

[29]  J. Murphy,et al.  Four-dimensional context of Earth's supercontinents , 2016, Special Publications.

[30]  J. Schimel Microbial ecology: Linking omics to biogeochemistry , 2016, Nature Microbiology.

[31]  Michael B. Meyer,et al.  BUILDING THE MINERAL EVOLUTION DATABASE: IMPLICATIONS FOR FUTURE BIG DATA ANALYSIS , 2016 .

[32]  R. Hazen,et al.  Evolution of Structural Complexity in Boron Minerals , 2016 .

[33]  Joshua J. Golden,et al.  Earth’s “missing” minerals , 2015 .

[34]  R. Hazen,et al.  Statistical analysis of mineral diversity and distribution: Earth's mineralogy is unique , 2015 .

[35]  Yana Bromberg,et al.  Functional Basis of Microorganism Classification , 2015, PLoS Comput. Biol..

[36]  C. Hawkesworth,et al.  Emergence of modern continental crust about 3 billion years ago , 2015 .

[37]  A. Knoll Paleobiological Perspectives on Early Microbial Evolution. , 2015, Cold Spring Harbor perspectives in biology.

[38]  R. Hazen,et al.  Mineral Species Frequency Distribution Conforms to a Large Number of Rare Events Model: Prediction of Earth’s Missing Minerals , 2015, Mathematical Geosciences.

[39]  I. A. Lundin,et al.  Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen , 2015 .

[40]  K. Knittel,et al.  Global dispersion and local diversification of the methane seep microbiome , 2015, Proceedings of the National Academy of Sciences.

[41]  Joshua J. Golden,et al.  MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS , 2015 .

[42]  B. White,et al.  Encyclopedia of Metagenomics , 2015, Springer US.

[43]  Peter A. Cawood,et al.  Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA , 2014 .

[44]  Peter A. Cawood,et al.  Earth’s middle age , 2014 .

[45]  R. Hazen,et al.  Beryllium mineral evolution , 2014 .

[46]  P. Falkowski,et al.  Evolutionary history of redox metal-binding domains across the tree of life , 2014, Proceedings of the National Academy of Sciences.

[47]  D. Bradley,et al.  THE GLOBAL AGE DISTRIBUTION OF GRANITIC PEGMATITES , 2014 .

[48]  Vikas Nanda,et al.  Function‐based assessment of structural similarity measurements using metal co‐factor orientation , 2014, Proteins.

[49]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[50]  T. Wubet,et al.  Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi , 2014, PloS one.

[51]  D. Reed,et al.  Gene-centric approach to integrating environmental genomics and biogeochemical models , 2014, Proceedings of the National Academy of Sciences.

[52]  D. Canfield Oxygen: A Four Billion Year History , 2014 .

[53]  M. Santosh,et al.  The supercontinent cycle: A retrospective essay , 2014 .

[54]  Joshua J. Golden,et al.  Mineral Evolution: Episodic Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and Biosphere , 2014 .

[55]  A. Knoll Paleobiological perspectives on early eukaryotic evolution. , 2014, Cold Spring Harbor perspectives in biology.

[56]  J. Zalasiewicz,et al.  The mineral signature of the Anthropocene in its deep-time context , 2013 .

[57]  Yolanda Gil,et al.  Open data: crediting a culture of cooperation. , 2013, Science.

[58]  Peter A. Cawood,et al.  Not all supercontinents are created equal: Gondwana-Rodinia case study , 2013 .

[59]  M. V. Kranendonk,et al.  Orogenic climax of Earth: the 1.2-1.1 Ga Grenvillian superevent , 2013 .

[60]  Joshua J. Golden,et al.  Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation , 2013 .

[61]  Peter A. Cawood,et al.  The continental record and the generation of continental crust , 2013 .

[62]  Linda C. Kah,et al.  Carbon Mineral Evolution , 2013 .

[63]  D. Schrag,et al.  Regulation of atmospheric oxygen during the Proterozoic , 2012 .

[64]  S. D’Hondt,et al.  Nature and Extent of the Deep Biosphere , 2012 .

[65]  L. Greene Protein structure networks. , 2012, Briefings in functional genomics.

[66]  R. M. Prol-Ledesma,et al.  The El Muerto “NYF” Granitic Pegmatite, Oaxaca, Mexico, and Its Striking Enrichment In Allanite-(Ce) and Monazite-(Ce) , 2012 .

[67]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[68]  Joshua J. Golden,et al.  Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere , 2012 .

[69]  P. Falkowski,et al.  TrAnsFuSE refines the search for protein function: oxidoreductases. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[70]  B. Schoene,et al.  Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago , 2012, Nature.

[71]  Noah Fierer,et al.  Using network analysis to explore co-occurrence patterns in soil microbial communities , 2011, The ISME Journal.

[72]  Peter A. Cawood,et al.  The Great Grenvillian Sedimentation Episode: Record of Supercontinent Rodinia's assembly , 2012 .

[73]  D. Bradley Secular trends in the geologic record and the supercontinent cycle , 2011 .

[74]  A. Knoll,et al.  Needs and opportunities in mineral evolution research , 2011 .

[75]  John Scott,et al.  The SAGE Handbook of Social Network Analysis , 2011 .

[76]  Peter J. Voice,et al.  Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains , 2011, The Journal of Geology.

[77]  J. McLelland,et al.  Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians , 2010 .

[78]  S. Dupont,et al.  Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[79]  Richard C. Aster,et al.  Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth , 2010 .

[80]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[81]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[82]  S. Pehrsson,et al.  The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting , 2010 .

[83]  R. Goldfarb,et al.  Secular Variation in Economic Geology , 2010 .

[84]  E. Casamayor,et al.  Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities , 2010 .

[85]  Peter A. Cawood,et al.  The generation and evolution of the continental crust , 2010, Journal of the Geological Society.

[86]  J. Ferry,et al.  Mineral Evolution: Mineralogy in the Fourth Dimension , 2010 .

[87]  E. Casamayor,et al.  Global ecological patterns in uncultured Archaea , 2010, The ISME Journal.

[88]  Aboul Ella Hassanien,et al.  Computational Social Network Analysis - Trends, Tools and Research Advances , 2010, Computational Social Network Analysis.

[89]  Peter A. Cawood,et al.  Metallogeny of accretionary orogens - The connection between lithospheric processes and metal endowment , 2009 .

[90]  S. Pisarevsky,et al.  Assembly and Breakup of Rodinia (Some results of IGCP project 440) , 2009 .

[91]  R. Knight,et al.  Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale , 2009, Applied and Environmental Microbiology.

[92]  W. Griffin,et al.  Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra , 2009 .

[93]  T. Rivers Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province—Implications for the evolution of large hot long-duration orogens , 2008 .

[94]  Spencer R. Weart,et al.  The Discovery of Global Warming: Revised and Expanded Edition , 2008 .

[95]  W. Dickinson Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis , 2008 .

[96]  M. Santosh,et al.  The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume , 2008 .

[97]  I. Campbell,et al.  Formation of supercontinents linked to increases in atmospheric oxygen , 2008 .

[98]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[99]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[100]  P. Silver,et al.  Intermittent Plate Tectonics? , 2006, Science.

[101]  W. Bleeker,et al.  Review Paper. Mineral evolution , 2008 .

[102]  R. Knight,et al.  Global patterns in bacterial diversity , 2007, Proceedings of the National Academy of Sciences.

[103]  Huaichun Wu,et al.  Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia , 2006 .

[104]  W. Horwath The Phanerozoic Carbon Cycle , 2006 .

[105]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  H. Stein,et al.  Molybdenite Re-Os dating constrains gravitational collapse of the Sveconorwegian orogen, SW Scandinavia , 2006 .

[107]  C. Hawkesworth,et al.  Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon , 2006, Nature.

[108]  R. B. Jackson,et al.  The diversity and biogeography of soil bacterial communities. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[109]  F. Blanckenburg The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment , 2005 .

[110]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[111]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[112]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[113]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[114]  L. M. Martínez-Torres,et al.  Isotopic, geochemical, and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwestern Sonora, Mexico: Implications for the reconstruction of the southwestern margin of Laurentia , 2004 .

[115]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[116]  B. Upton,et al.  Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting , 2003 .

[117]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[118]  A. J. Kaufman,et al.  δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations , 1999 .

[119]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[120]  David J. Hand,et al.  Data Mining: Statistics and More? , 1998 .

[121]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[122]  R. Eby,et al.  Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic pikes peak batholith, Colorado , 1995 .

[123]  J. Grotzinger,et al.  Orographic precipitation, erosional unloading, and tectonic style , 1993 .

[124]  S. Eggins,et al.  High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge , 1993 .

[125]  W. F. Cannon,et al.  Metallogeny of the Midcontinent rift system of North America , 1992 .

[126]  A. Knoll Biological and Biogeochemical Preludes to the Ediacaran Radiation , 1992 .

[127]  P. Kelemen,et al.  High-field-strength element depletions in arc basalts due to mantle–magma interaction , 1990, Nature.

[128]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[129]  R. Wood The dark side of the earth , 1985 .

[130]  I. Gass The story of the Earth , 1985 .

[131]  H. Baadsgaard,et al.  Geochronology of the gloserheia pegmatite, Froland, southern Norway , 1984 .

[132]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[133]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[134]  Barbara G. Beddall,et al.  Wallace, Darwin, and the theory of natural selection , 1968 .