Output feedback strategies for systems with impulsive and fast controls

This paper deals with output feedback impulse control under set-membership uncertainty where the control realization consists of a sequence of δ-impulses. It indicates solution schemes based on generalized Dynamic Programming relations of the HJB type and suggests recommendation for computation. The problem is then generalized to the case of high-order “fast” controls which solve the terminal control problem in arbitrary small time. Finally an output feedback control problem is solved where communication signals for the available noisy measurements arrive at Poisson instants of time. Numerical examples are demonstrated.

[1]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[2]  A. N. Krasovskii,et al.  Control under Lack of Information , 1994, Dynamics and Control.

[3]  P. Varaiya,et al.  Ellipsoidal Toolbox (ET) , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[5]  A. B. Kurzhanski On the Problem of Measurement Feedback Control: Ellipsoidal Techniques , 2005 .

[6]  A. Kurzhanski,et al.  Impulse Control Inputs and the Theory of Fast Feedback Control , 2008 .

[7]  A. V. Seleznev,et al.  A Dynamic Programming Approach to the Impulse Control Synthesis Problem , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  W. Wonham On the Separation Theorem of Stochastic Control , 1968 .

[9]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[10]  L. Schwartz Théorie des distributions , 1966 .

[11]  Alexander N. Daryin,et al.  Dynamic programming for impulse controls , 2008, Annu. Rev. Control..

[12]  A. Kurzhanski,et al.  On the Theory of Trajectory Tubes — A Mathematical Formalism for Uncertain Dynamics, Viability and Control , 1993 .

[13]  M. R. James,et al.  Partially Observed Differential Games, Infinite-Dimensional Hamilton--Jacobi--Isaacs Equations, and Nonlinear $H_\infty$ Control , 1996 .

[14]  A. Kurzhanski Identification - a theory of guaranteed estimates , 1989 .

[15]  L. Neustadt Optimization, a Moment Problem, and Nonlinear Programming , 1964 .

[16]  Federico Thomas,et al.  An ellipsoidal calculus based on propagation and fusion , 2002, IEEE Trans. Syst. Man Cybern. Part B.