New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour
暂无分享,去创建一个
J. B. Correia | T. Palacios | E. Alves | P. Carvalho | M. Dias | E. Tejado | J. Y. Pastor | J. Pastor
[1] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[2] Thermal expansion of tungsten , 1925 .
[3] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[4] R. E. Barker. An Approximate Relation Between Elastic Moduli and Thermal Expansivities , 1963 .
[5] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[6] E. A. Wasson. Structural materials. Edited by G. Weidmann, P. Lewis and N. Reid. Butterorths, London 1990. 430 pp, £ 18.95. ISBN 0‐408‐046589 , 1991 .
[7] H. Ledbetter. Dynamic vs. static Young's moduli: a case study , 1993 .
[8] M. Elices,et al. Stress Intensity factor, compliance and CMOD for a General Three-Point-Bend Beam , 1998 .
[9] Joseph R. Davis,et al. Alloying: Understanding the Basics , 2001 .
[10] Jj Kübier. Fracture Toughness of Ceramics using the SEVNB Method: From a Preliminary Study to a Standard Test Method , 2002 .
[11] E. Lara‐Curzio,et al. Comparison of different experimental techniques for determination of elastic properties of solids , 2004 .
[12] Elastic Modulus by Resonance of Rectangular Prisms: Corrections for Edge Treatments. , 2004 .
[13] Yican Wu,et al. Status of R&D activities on materials for fusion power reactors , 2007 .
[14] Steven J. Zinkle,et al. Materials challenges for ITER - Current status and future activities , 2007 .
[15] A. Wilkinson,et al. Measuring anisotropy in Young’s modulus of copper using microcantilever testing , 2009 .
[16] Y. Birol. Thermal fatigue testing of CuCrZr alloy for high temperature tooling applications , 2010 .
[17] R. Neu,et al. Deuterium inventory in the full-tungsten divertor of ASDEX Upgrade , 2010 .
[18] P. Fauchais,et al. Thermal Sprayed Coatings Used Against Corrosion and Corrosive Wear , 2012 .
[19] Farouk Fardoun,et al. Comparative Review Study on Elastic Properties Modeling for Unidirectional Composite Materials , 2012 .
[20] J. Michler,et al. Invited Article: Indenter materials for high temperature nanoindentation. , 2013, The Review of scientific instruments.
[21] J. B. Correia,et al. Synergistic helium and deuterium blistering in tungsten-tantalum composites , 2013 .
[22] J. B. Correia,et al. Effects of helium and deuterium irradiation on SPS sintered W–Ta composites at different temperatures , 2013 .
[23] S. Fuchs. Thermal Barrier Coatings , 2013 .
[24] Eliseo Visca,et al. Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor , 2013 .
[25] P. F. Morris,et al. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment , 2014, 1408.3546.
[26] X. Litaudon,et al. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems , 2015 .
[27] J.-H. You,et al. European DEMO divertor target: Operational requirements and material-design interface , 2016 .
[28] M. Rieth,et al. Enhancing the DEMO divertor target by interlayer engineering , 2015 .
[29] Robert D. Weed,et al. Copper and Copper Alloys , 2015 .
[30] J. B. Correia,et al. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications , 2015 .
[31] T. Palacios,et al. Influence of the notch root radius on the fracture toughness of brittle metals: Nanostructure tungsten alloy, a case study , 2015 .
[32] Eliseo Visca,et al. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components , 2016 .
[33] M. Enculescu,et al. Cu-based composites as thermal barrier materials in DEMO divertor components , 2017 .