New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

[1]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[2]  Thermal expansion of tungsten , 1925 .

[3]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[4]  R. E. Barker An Approximate Relation Between Elastic Moduli and Thermal Expansivities , 1963 .

[5]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[6]  E. A. Wasson Structural materials. Edited by G. Weidmann, P. Lewis and N. Reid. Butterorths, London 1990. 430 pp, £ 18.95. ISBN 0‐408‐046589 , 1991 .

[7]  H. Ledbetter Dynamic vs. static Young's moduli: a case study , 1993 .

[8]  M. Elices,et al.  Stress Intensity factor, compliance and CMOD for a General Three-Point-Bend Beam , 1998 .

[9]  Joseph R. Davis,et al.  Alloying: Understanding the Basics , 2001 .

[10]  Jj Kübier Fracture Toughness of Ceramics using the SEVNB Method: From a Preliminary Study to a Standard Test Method , 2002 .

[11]  E. Lara‐Curzio,et al.  Comparison of different experimental techniques for determination of elastic properties of solids , 2004 .

[12]  Elastic Modulus by Resonance of Rectangular Prisms: Corrections for Edge Treatments. , 2004 .

[13]  Yican Wu,et al.  Status of R&D activities on materials for fusion power reactors , 2007 .

[14]  Steven J. Zinkle,et al.  Materials challenges for ITER - Current status and future activities , 2007 .

[15]  A. Wilkinson,et al.  Measuring anisotropy in Young’s modulus of copper using microcantilever testing , 2009 .

[16]  Y. Birol Thermal fatigue testing of CuCrZr alloy for high temperature tooling applications , 2010 .

[17]  R. Neu,et al.  Deuterium inventory in the full-tungsten divertor of ASDEX Upgrade , 2010 .

[18]  P. Fauchais,et al.  Thermal Sprayed Coatings Used Against Corrosion and Corrosive Wear , 2012 .

[19]  Farouk Fardoun,et al.  Comparative Review Study on Elastic Properties Modeling for Unidirectional Composite Materials , 2012 .

[20]  J. Michler,et al.  Invited Article: Indenter materials for high temperature nanoindentation. , 2013, The Review of scientific instruments.

[21]  J. B. Correia,et al.  Synergistic helium and deuterium blistering in tungsten-tantalum composites , 2013 .

[22]  J. B. Correia,et al.  Effects of helium and deuterium irradiation on SPS sintered W–Ta composites at different temperatures , 2013 .

[23]  S. Fuchs Thermal Barrier Coatings , 2013 .

[24]  Eliseo Visca,et al.  Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor , 2013 .

[25]  P. F. Morris,et al.  Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment , 2014, 1408.3546.

[26]  X. Litaudon,et al.  European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems , 2015 .

[27]  J.-H. You,et al.  European DEMO divertor target: Operational requirements and material-design interface , 2016 .

[28]  M. Rieth,et al.  Enhancing the DEMO divertor target by interlayer engineering , 2015 .

[29]  Robert D. Weed,et al.  Copper and Copper Alloys , 2015 .

[30]  J. B. Correia,et al.  The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications , 2015 .

[31]  T. Palacios,et al.  Influence of the notch root radius on the fracture toughness of brittle metals: Nanostructure tungsten alloy, a case study , 2015 .

[32]  Eliseo Visca,et al.  Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components , 2016 .

[33]  M. Enculescu,et al.  Cu-based composites as thermal barrier materials in DEMO divertor components , 2017 .