On a class of integrable Hamiltonian equations in 2+1 dimensions

We classify integrable Hamiltonian equations of the form ut=∂x(δHδu),H=∫h(u,w) dxdy, where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality w=∂x−1∂yu. Based on the method of hydrodynamic reductions, the integrability conditions are derived (in the form of an involutive PDE system for the Hamiltonian density h). We show that the generic integrable density is expressed in terms of the Weierstrass σ-function: h(u, w) = σ(u) ew. Dispersionless Lax pairs, commuting flows and dispersive deformations of the resulting equations are also discussed.

[1]  Boris Kruglikov,et al.  Dispersionless integrable systems in 3D and Einstein-Weyl geometry , 2012, 1208.2728.

[2]  A. Moro,et al.  Integrable equations in 2 + 1 dimensions: deformations of dispersionless limits , 2009, 0903.3586.

[3]  Boris Dubrovin On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour , 2005 .

[4]  K. Khusnutdinova,et al.  The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type , 2003, nlin/0310021.

[5]  E. Cartan Sur une classe d'espaces de Weyl , 1943 .

[6]  V. Zakharov Dispersionless Limit of Integrable Systems in 2 + 1 Dimensions , 1994 .

[7]  N. Hitchin Complex manifolds and Einstein’s equations , 1982 .

[8]  B. M. Fulk MATH , 1992 .

[9]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[10]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[11]  E. Ferapontov,et al.  On the Einstein-Weyl and conformal self-duality equations , 2014, 1406.0018.

[12]  N. Stoilov,et al.  Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions , 2010, 1007.3782.

[13]  B. Dubrovin,et al.  Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation , 1997, hep-th/9712232.

[14]  V. Sokolov,et al.  Hamiltonian Systems of Hydrodynamic Type in 2 + 1 Dimensions , 2007, 0710.2012.

[15]  A. Moro,et al.  Dispersive deformations of hydrodynamic reductions of (2 + 1)D dispersionless integrable systems , 2008, 0807.2409.

[16]  K. Khusnutdinova,et al.  On the Integrability of (2+1)-Dimensional Quasilinear Systems , 2003, nlin/0305044.

[17]  B. Dubrovin,et al.  Hamiltonian PDEs: deformations, integrability, solutions , 2010 .

[18]  Boris Dubrovin,et al.  On Hamiltonian perturbations of hyperbolic systems of conservation laws , 2004 .

[19]  J. Gibbons,et al.  REDUCTIONS OF THE BENNEY EQUATIONS , 1996 .