LINE-1 Evasion of Epigenetic Repression in Humans.

[1]  G. Faulkner,et al.  Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation , 2019, Molecular and Cellular Biology.

[2]  G. Faulkner,et al.  L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution. , 2018, Cell reports.

[3]  J. Boeke,et al.  Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression , 2018, Proceedings of the National Academy of Sciences.

[4]  Helen M. Rowe,et al.  The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes , 2018, Genome research.

[5]  G. Faulkner,et al.  L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis , 2018, Genome research.

[6]  T. Swigut,et al.  Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators , 2017, Nature.

[7]  Geoffrey J Faulkner,et al.  L1 Mosaicism in Mammals: Extent, Effects, and Evolution. , 2017, Trends in genetics : TIG.

[8]  Yixuan Wang,et al.  The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution. , 2017, Trends in genetics : TIG.

[9]  Ryan E. Mills,et al.  The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology , 2017, Genome research.

[10]  D. Trono,et al.  KRAB zinc finger proteins , 2017, Development.

[11]  J. V. Moran,et al.  Mobile DNA in Health and Disease , 2017, The New England journal of medicine.

[12]  K. Burns Transposable elements in cancer , 2017, Nature Reviews Cancer.

[13]  S. Devine,et al.  The Role of Somatic L1 Retrotransposition in Human Cancers , 2017, Viruses.

[14]  G. Faulkner,et al.  Heritable L1 retrotransposition in the mouse primordial germline and early embryo , 2017, Genome research.

[15]  Ryan E. Mills,et al.  Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network , 2017, Science.

[16]  D. Trono,et al.  KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks , 2017, Nature.

[17]  A. Muotri,et al.  Engineered LINE-1 retrotransposition in nondividing human neurons , 2017, Genome research.

[18]  Andrew Emili,et al.  Multiparameter functional diversity of human C2H2 zinc finger proteins , 2016, Genome research.

[19]  J. Houseley,et al.  TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells , 2016, Genome Biology.

[20]  F. Gage,et al.  L1-associated genomic regions are deleted in somatic cells of the healthy human brain , 2016, Nature Neuroscience.

[21]  K. Burns,et al.  Somatically Acquired LINE‐1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma , 2016, Human mutation.

[22]  J. Goodier Restricting retrotransposons: a review , 2016, Mobile DNA.

[23]  S. Devine,et al.  A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer , 2016, Genome research.

[24]  J. Vera-Otarola,et al.  Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci , 2016, eLife.

[25]  Helen M. Rowe,et al.  Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. , 2016, Developmental cell.

[26]  Aurélie Teissandier,et al.  An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells , 2016, eLife.

[27]  Balázs Sarkadi,et al.  Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells , 2016, Nature Communications.

[28]  F. Gage,et al.  Primate-Specific ORF0 Contributes to Retrotransposon-Mediated Diversity , 2015, Cell.

[29]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[30]  Akhilesh Pandey,et al.  Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution , 2015, Genome research.

[31]  Leanne S. Whitmore,et al.  Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites , 2015, Genome research.

[32]  Geoffrey J. Faulkner,et al.  Ubiquitous L1 Mosaicism in Hippocampal Neurons , 2015, Cell.

[33]  J. Rinn,et al.  Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells , 2015, Nature Genetics.

[34]  E. Füchtbauer,et al.  The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses , 2015, Genes & development.

[35]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[36]  C. Walsh,et al.  Cell Lineage Analysis in Human Brain Using Endogenous Retroelements , 2015, Neuron.

[37]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[38]  David Haussler,et al.  An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons , 2014, Nature.

[39]  Andrew Menzies,et al.  Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes , 2014, Science.

[40]  D. Trono,et al.  Evolutionally dynamic L1 regulation in embryonic stem cells , 2014, Genes & development.

[41]  D. Trono,et al.  Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements , 2014, Genome research.

[42]  S. Quake,et al.  Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome , 2014, Proceedings of the National Academy of Sciences.

[43]  Gad Getz,et al.  Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing , 2014, Genome research.

[44]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[45]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[46]  Michael Q. Zhang,et al.  BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data , 2013, BMC Genomics.

[47]  Gene W. Yeo,et al.  Differential LINE-1 regulation in pluripotent stem cells of humans and other great apes , 2013, Nature.

[48]  Mireya Plass,et al.  The Microprocessor controls the activity of mammalian retrotransposons , 2013, Nature Structural &Molecular Biology.

[49]  S. Goff,et al.  Proviral silencing in embryonic cells is regulated by Yin Yang 1. , 2013, Cell reports.

[50]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[51]  Wenfeng An,et al.  LINE-1-derived poly(A) microsatellites undergo rapid shortening and create somatic and germline mosaicism in mice. , 2013, Molecular biology and evolution.

[52]  X. Xie,et al.  Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell , 2012, Science.

[53]  C. Walsh,et al.  Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain , 2012, Cell.

[54]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[55]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[56]  G. Hon,et al.  Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome , 2012, Cell.

[57]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[58]  J. Mattick,et al.  Somatic retrotransposition alters the genetic landscape of the human brain , 2011, Nature.

[59]  Adrian M. Stütz,et al.  A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans , 2011, PLoS genetics.

[60]  Deniz Yorukoglu,et al.  Alu repeat discovery and characterization within human genomes. , 2011, Genome research.

[61]  H. Kazazian,et al.  Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. , 2011, Genome research.

[62]  Fred H. Gage,et al.  A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells , 2010, Cell.

[63]  J. L. Cortés,et al.  Epigenetic Control of Retrotransposon Expression in Human Embryonic Stem Cells , 2010, Molecular and Cellular Biology.

[64]  Fred H. Gage,et al.  L1 retrotransposition in neurons is modulated by MeCP2 , 2010, Nature.

[65]  H. Kazazian,et al.  High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. , 2010, Genome research.

[66]  J. V. Moran,et al.  Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells , 2010, Nature.

[67]  Jinchuan Xing,et al.  Mobile element scanning (ME-Scan) by targeted high-throughput sequencing , 2010, BMC Genomics.

[68]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[69]  Evan E. Eichler,et al.  LINE-1 Retrotransposition Activity in Human Genomes , 2010, Cell.

[70]  Helen M. Rowe,et al.  KAP1 controls endogenous retroviruses in embryonic stem cells , 2010, Nature.

[71]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[72]  P. Cartron,et al.  Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation , 2009, Epigenetics.

[73]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[74]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[75]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[76]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[77]  Masaaki Oda,et al.  QUMA: quantification tool for methylation analysis , 2008, Nucleic Acids Res..

[78]  P. D. de Jong,et al.  L1 retrotransposition can occur early in human embryonic development. , 2007, Human molecular genetics.

[79]  Ryan E. Mills,et al.  Which transposable elements are active in the human genome? , 2007, Trends in genetics : TIG.

[80]  Tomohiro Hayakawa,et al.  Maintenance of self‐renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b , 2006, Genes to cells : devoted to molecular & cellular mechanisms.

[81]  Deepak Grover,et al.  dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans , 2006, Human mutation.

[82]  Stéphane Boissinot,et al.  Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. , 2005, Genome research.

[83]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[84]  O. Weichenrieder,et al.  Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. , 2004, Structure.

[85]  N. Yang,et al.  An important role for RUNX3 in human L1 transcription and retrotransposition. , 2003, Nucleic acids research.

[86]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  E. Ostertag,et al.  Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. , 2001, Genome research.

[88]  A. Jeltsch,et al.  Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpA sites 1 1 Edited by J. Karn , 2001 .

[89]  M. Speek Antisense Promoter of Human L1 Retrotransposon Drives Transcription of Adjacent Cellular Genes , 2001, Molecular and Cellular Biology.

[90]  M. Boguski,et al.  Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.

[91]  J. V. Moran,et al.  Determination of L1 retrotransposition kinetics in cultured cells. , 2000, Nucleic acids research.

[92]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[93]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[94]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[95]  Y. Sakaki,et al.  Identification of critical CpG sites for repression of L1 transcription by DNA methylation. , 1997, Gene.

[96]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[98]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[99]  H. Kazazian,et al.  A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion , 1994, Nature Genetics.

[100]  R. E. Thayer,et al.  Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. , 1993, Human molecular genetics.

[101]  A. F. Scott,et al.  Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[102]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[103]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[104]  Piero Carninci,et al.  Edinburgh Research Explorer Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma , 2022 .

[105]  G. Faulkner,et al.  Analysis of Somatic LINE-1 Insertions in Neurons , 2017 .

[106]  J. V. Moran,et al.  LINE-1 Cultured Cell Retrotransposition Assay. , 2016, Methods in molecular biology.

[107]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[108]  Gene W. Yeo,et al.  Differential L 1 regulation in pluripotent stem cells of humans and apes , 2013 .

[109]  J. V. Moran,et al.  Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. , 2012, Human molecular genetics.

[110]  Kevin A. Pelphrey,et al.  Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell , 2012 .

[111]  S. Salzberg,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[112]  Joomyeong Kim,et al.  YY1's longer DNA-binding motifs. , 2009, Genomics.

[113]  J. V. Moran,et al.  A YY1-binding site is required for accurate human LINE-1 transcription initiation. , 2004, Nucleic acids research.

[114]  H. Varmus Reverse transcription. , 1987, Scientific American.

[115]  M. Batzer,et al.  LSU Digital Commons LSU Digital Commons Mobile element scanning (ME-Scan) identifies thousands of novel Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations Alu insertions in diverse human populations , 2022 .