Multi-level multi-fidelity sparse polynomial chaos expansion based on Gaussian process regression

Abstract The polynomial chaos expansion (PCE) approaches have drawn much attention in the field of simulation-based uncertainty quantification (UQ) of stochastic problem. In this paper, we present a multi-level multi-fidelity (MLMF) extension of non-intrusive sparse PCE based on recent work of recursive Gaussian process regression (GPR) methodology. The proposed method firstly builds the full PCE with varying degree of fidelity based on GPR technique using orthogonal polynomial covariance function. Then an autoregressive scheme is used to exploit the cross-correlation of these PCE models of different fidelity level, and this procedure yields a high-fidelity PCE model that encodes the information of all the lower fidelity levels. Furthermore, an iterative scheme is used to detect the important bases of PCE in each fidelity level. Three test examples are investigated d to validate the performance of the proposed method, and the results show that the present method provides an accurate meta-model for UQ of stochastic problem.

[1]  Pramudita Satria Palar,et al.  Global sensitivity analysis via multi-fidelity polynomial chaos expansion , 2017, Reliab. Eng. Syst. Saf..

[2]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[3]  Francesco Contino,et al.  A robust and efficient stepwise regression method for building sparse polynomial chaos expansions , 2017, J. Comput. Phys..

[4]  Zhenzhou Lu,et al.  Sparse polynomial chaos expansion based on D-MORPH regression , 2018, Appl. Math. Comput..

[5]  Mehrdad Raisee,et al.  Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing , 2017 .

[6]  Sameer B. Mulani,et al.  A new non-intrusive polynomial chaos using higher order sensitivities , 2018 .

[7]  Paul Diaz,et al.  Sparse polynomial chaos expansions via compressed sensing and D-optimal design , 2017, Computer Methods in Applied Mechanics and Engineering.

[8]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[9]  Stefan Görtz,et al.  Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function , 2013 .

[10]  Thomas D. Economon,et al.  Stanford University Unstructured (SU 2 ): An open-source integrated computational environment for multi-physics simulation and design , 2013 .

[11]  Zhenzhou Lu,et al.  Mixed kernel function support vector regression for global sensitivity analysis , 2017 .

[12]  Xiu Yang,et al.  Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..

[13]  Alireza Doostan,et al.  On polynomial chaos expansion via gradient-enhanced ℓ1-minimization , 2015, J. Comput. Phys..

[14]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[15]  Loic Le Gratiet,et al.  RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY , 2012, 1210.0686.

[16]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[17]  Zhenzhou Lu,et al.  A Bayesian Monte Carlo-based method for efficient computation of global sensitivity indices , 2019, Mechanical Systems and Signal Processing.

[18]  Tiangang Cui,et al.  Multifidelity importance sampling , 2016 .

[19]  Tao Zhou,et al.  A gradient enhanced ℓ1-minimization for sparse approximation of polynomial chaos expansions , 2018, J. Comput. Phys..

[20]  Mehrdad Raisee,et al.  An efficient multifidelity ℓ1-minimization method for sparse polynomial chaos , 2018, Computer Methods in Applied Mechanics and Engineering.

[21]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[22]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[23]  A. Doostan,et al.  Least squares polynomial chaos expansion: A review of sampling strategies , 2017, 1706.07564.

[24]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[25]  C. Lacor,et al.  A non‐intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition , 2015 .

[26]  N. Wiener The Homogeneous Chaos , 1938 .

[27]  Zhenzhou Lu,et al.  Global sensitivity analysis using support vector regression , 2017 .

[28]  Francesco Montomoli,et al.  SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos , 2016, J. Comput. Phys..

[29]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[30]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[31]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[32]  Wentao Mao,et al.  A fast and robust model selection algorithm for multi-input multi-output support vector machine , 2014, Neurocomputing.

[33]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[34]  D. Bryson,et al.  All-at-once approach to multifidelity polynomial chaos expansion surrogate modeling , 2017 .

[35]  Stefan Görtz,et al.  Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling , 2012 .

[36]  R. Haftka,et al.  Review of multi-fidelity models , 2016, Advances in Computational Science and Engineering.

[37]  George E. Karniadakis,et al.  Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..

[38]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[39]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[40]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[41]  Roger Ghanem,et al.  Convergence acceleration of polynomial chaos solutions via sequence transformation , 2014 .

[42]  Leo Wai-Tsun Ng,et al.  Multifidelity approaches for optimization under uncertainty , 2014 .

[43]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[44]  Geoffrey T. Parks,et al.  Multi-fidelity non-intrusive polynomial chaos based on regression , 2016 .

[45]  Pan Wang,et al.  Multivariate global sensitivity analysis for dynamic models based on wavelet analysis , 2018, Reliab. Eng. Syst. Saf..

[46]  Olivier Roustant,et al.  Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..

[47]  Zhenzhou Lu,et al.  Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression , 2018 .

[48]  Daniele Venturi,et al.  Multi-fidelity Gaussian process regression for prediction of random fields , 2017, J. Comput. Phys..

[49]  Weiwei Zhang,et al.  Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties , 2018 .

[50]  Zhenzhou Lu,et al.  Multivariate global sensitivity analysis for dynamic models based on energy distance , 2017, Structural and Multidisciplinary Optimization.