Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems

In this paper, we show how to create plain-weaving over an arbitrary surface. To create a plain-weaving on a surface, we need to create cycles that cross other cycles (or themselves) by alternatingly going over and under. We use the fact that it is possible to create such cycles, starting from any given manifold-mesh surface by simply twisting every edge of the manifold mesh. We have developed a new method that converts plain-weaving cycles to 3D thread structures. Using this method, it is possible to cover a surface without large gaps between threads by controlling the sizes of the gaps. We have developed a system that converts any manifold mesh to a plain-woven object, by interactively controlling the shapes of the threads with a set of parameters. We have demonstrated that by using this system, we can create a wide variety of plain-weaving patterns, some of which may not have been seen before.

[1]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[2]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[3]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[4]  Frank K. Ko,et al.  Triaxial Woven Fabrics , 1981 .

[5]  L. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.

[6]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[7]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[8]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[9]  Christian Mercat,et al.  Les entrelacs des enluminures celtes , 1997 .

[10]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[11]  Ergun Akleman,et al.  Guaranteeing the 2-Manifold Property for Meshes with doubly Linked Face List , 1999, Int. J. Shape Model..

[12]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[13]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[14]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[15]  Elaine Cohen,et al.  Computer Generated Celtic Design , 2003, Rendering Techniques.

[16]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[17]  Elaine Cohen,et al.  Pattern oriented remeshing for Celtic decoration , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[18]  Ergun Akleman,et al.  Semiregular pentagonal subdivisions , 2004, Proceedings Shape Modeling Applications, 2004..

[19]  Esan Mandal,et al.  Remeshing Schemes for semi-regular tilings , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[20]  Ergun Akleman,et al.  Regular Mesh Construction Algorithms using Regular Handles , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[21]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[22]  E. Akleman,et al.  D An Interactive Topological Mesh Modeler , 2008 .

[23]  Craig S. Kaplan,et al.  Semiregular patterns on surfaces , 2009, NPAR '09.