Field cage evaluation of interspecific interaction of two aphelinid parasitoids and biocontrol effect on Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East‐Asia Minor 1

To explore sustainably effective biological control measures to suppress the super pest Bemisia tabaci (Gennadius) Middle East‐Asia Minor 1 and better understand the biological control effects of single and multiple releases of parasitoids, we evaluated the performance and interaction of two aphelinid parasitoids of B. tabaci, Eretmocerus hayati Zolnerowich & Rose (an exotic primary parasitoid) and Encarsia sophia (Girault & Dodd) (an autoparasitoid, which is controversial in a biological control program). Single species or two species were jointly (1:1 density ratio) released in field cages on cotton in Hebei province, China, in 2010. Results of the field cage experiment showed that all parasitoid release treatments were successful in reducing the densities of the host B. tabaci relative to the control in which no parasitoid was released. The combined release of two parasitoid species showed the highest control effect among the treatments. Different population growth trajectories indicated asymmetric competitive effects of En. sophia on Er. hayati. The densities of Er. hayati were significantly higher in the Er. hayati alone treatment than in the combined release treatment, while densities of En. sophia were lower in the En. sophia alone treatment than in the combined release treatment. Our results demonstrated interspecific competition between autoparasitoid En. sophia and exotic primary parasitoid Er. hayati. However, no evidence indicated that autoparasitoid En. sophia disrupted the host suppression achieved by primary parasitoid Er. hayati. The release of the autoparasitoid together with the primary parasitoid may not influence host suppression in biological control.

[1]  M. S. Hunter,et al.  Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia sophia , 2001, Oecologia.

[2]  F. Wan,et al.  Competitive Interactions between Parasitoids Provide New Insight into Host Suppression , 2013, PloS one.

[3]  F. Wan,et al.  Shifting Preference between Oviposition vs. Host-Feeding under Changing Host Densities in Two Aphelinid Parasitoids , 2012, PloS one.

[4]  F. Wan,et al.  Host suitability of different instars of Bemisia tabaci biotype B for the parasitoid Eretmocerus hayati , 2011 .

[5]  Tong‐Xian Liu,et al.  Reevaluation of the Value of Autoparasitoids in Biological Control , 2011, PloS one.

[6]  Jianhui Wu,et al.  Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China , 2011 .

[7]  Tong‐Xian Liu,et al.  Mating and host density affect host feeding and parasitism in two species of whitefly parasitoids , 2011 .

[8]  Zuhua Shi,et al.  Interspecific interference competition between Encarsia formosa and Encarsia sophia (Hymenoptera: Aphelinidae) in parasitizing Bemisia tabaci (Hemiptera: Aleyrodidae) on five tomato varieties , 2011 .

[9]  Tong‐Xian Liu,et al.  Fitness of Encarsia sophia (Hymenoptera: Aphelinidae) parasitizing Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae) , 2011 .

[10]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[11]  F. Wan,et al.  Effects of plant essential oils on immature and adult sweetpotato whitefly, Bemisia tabaci biotype B , 2010 .

[12]  F. Byrne,et al.  Understanding the dynamics of neonicotinoid activity in the management of Bemisia tabaci whiteflies on poinsettias. , 2010 .

[13]  Shaoli Wang,et al.  Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). , 2010, Pest management science.

[14]  D. Schuster,et al.  Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. , 2010, Pest management science.

[15]  Tong‐Xian Liu,et al.  Food-deprived host-feeding parasitoids kill more pest insects , 2009 .

[16]  P. D. De Barro,et al.  Post-release evaluation of Eretmocerus hayati Zolnerowich and Rose in Australia. , 2009, Bulletin of entomological research.

[17]  Youjun Zhang,et al.  Invasive mechanism and management strategy of Bemisia tabaci (Gennadius) biotype B: Progress report of 973 Program on invasive alien species in China , 2009, Science in China Series C: Life Sciences.

[18]  Tong‐Xian Liu,et al.  Host‐feeding of three parasitoid species on Bemisia tabaci biotype B and implications for whitefly biological control , 2008 .

[19]  P. Debach Citrus whitefly parasites established in California Mike Rose 0 , 2008 .

[20]  J. Xu,et al.  Asymmetric Mating Interactions Drive Widespread Invasion and Displacement in a Whitefly , 2007, Science.

[21]  F. Wan,et al.  Real-time PCR quantification of Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype remains in predator guts , 2007 .

[22]  F. Wan,et al.  Detection of Bemisia tabaci remains in predator guts using a sequence‐characterized amplified region marker , 2007 .

[23]  Peter C. Ellsworth,et al.  Post-release evaluation of biological control of Bemisia tabaci biotype "B" in the USA and the development of predictive tools to guide introductions for other countries , 2005 .

[24]  N. Mills,et al.  Single vs. multiple introduction in biological control: the roles of parasitoid efficiency, antagonism and niche overlap , 2004 .

[25]  L. Hemerik,et al.  Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encarsia formosa , 2004 .

[26]  Q. Bao Species and dynamics of aphelinid parasitoids of Bemisia tabaci in Guangdong , 2004 .

[27]  B. Antony,et al.  Encarsia transvena (Hymenoptera: Aphelinidae) Development on Different Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) Instars , 2003 .

[28]  Ren Shun Morphological and life habit of Axinoscymnus cadilobus , 2003 .

[29]  M. S. Hunter,et al.  DOES AN AUTOPARASITOID DISRUPT HOST SUPPRESSION PROVIDED BY A PRIMARY PARASITOID , 2002 .

[30]  K. Heinz,et al.  Host selection by the heteronomous hyperparasitoid Encarsia pergandiella: multiple‐choice tests using Bemisia argentifolii as primary host , 2002 .

[31]  K. Heinz,et al.  INTERSPECIFIC COMPETITION AMONG INSECT PARASITOIDS: FIELD EXPERIMENTS WITH WHITEFLIES AS HOSTS IN COTTON , 2002 .

[32]  Luo Chen The use of mitochondrial cytochrome oxidase I(mt COI)gene sequences for the identification of biotypes of Bemisia tabaci(Gennadius)in China , 2002 .

[33]  Thomas J. Henneberry,et al.  History, current status and collaborative research projects for Bemisia tabaci , 2001 .

[34]  C. Briggs,et al.  Autoparasitism, interference, and parasitoid-pest population dynamics. , 2001, Theoretical population biology.

[35]  J. Woolley,et al.  Evolution and behavioral ecology of heteronomous aphelinid parasitoids. , 2001, Annual review of entomology.

[36]  D. Gu,et al.  Investigation and identification of the whitefly parasitoids (Hymenoptera: Aphelinidae, Platygasteridae) , 2000 .

[37]  J. Goolsby,et al.  Development of Parasitoid inoculated Seedling Transplants for Augmentative Biological Control of Silverleaf Whitefly (Homoptera: Aleyrodidae) , 1999 .

[38]  M. S. Hunter,et al.  Hyperparasitism by an exotic autoparasitoid: secondary host selection and the window of vulnerability of conspecific and native heterospecific hosts , 1998 .

[39]  J. Goolsby,et al.  Laboratory and Field Evaluation of Exotic Parasitoids ofBemisia tabaci(Gennadius) (Biotype “B”) (Homoptera: Aleyrodidae) in the Lower Rio Grande Valley of Texas , 1998 .

[40]  G. Zolnerowich,et al.  Eretmocerus Haldeman (Hymenoptera: Aphelinidae) imported and released in the United States for control of Bemisia (Tabaci complex) (Homoptera: Aleyrodidae) , 1998 .

[41]  A. Gutierrez,et al.  Prospective modelling in biological control: an analysis of the dynamics of heteronomous hyperparasitism in a cotton-whitefly-parasitoid system , 1996 .

[42]  J. M. Nelson,et al.  Interspecific Interactions among Natural Enemies ofBemisiain an Inundative Biological Control Program , 1996 .

[43]  T. Perring Biological differences of two species of Bemisia that contribute to adaptive advantage , 1996 .

[44]  Rosemarie C. Rosell,et al.  The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? , 1995 .

[45]  W. Murdoch,et al.  Coexistence of Competing Parasitoid Species on a Host with a Variable Life Cycle , 1993 .

[46]  C. Briggs Competition Among Parasitoid Species on a Stage-Structured Host and Its Effect on Host Suppression , 1993, The American Naturalist.

[47]  D. Soluk,et al.  Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators , 1988 .

[48]  G. Walter ‘Divergent male ontogenies’ in Aphelinidae (Hymenoptera: Chalcidoidea): a simplified classification and a suggested evolutionary sequence , 1983 .

[49]  G. Sibbett,et al.  Walnut aphid becoming a costly midsummer pest , 1982 .

[50]  L. Ehler,et al.  Evidence for Competitive Exclusion of Introduced Natural Enemies in Biological Control , 1982 .

[51]  L. Ehler Utility of Facultative Secondary Parasites in Biological Control , 1979 .

[52]  J. Reinert,et al.  Biological Control of Citrus Blackfly in Southern Florida , 1979 .

[53]  R. Burton,et al.  Control of a Primary Parasite of the Greenbug with a Secondary Parasite in Greenhouse Screening for Plant Resistance , 1977 .