Parallel quantum trajectories via forking for sampling without redundancy

The computational cost of preparing a quantum state can be substantial depending on the structure of data to be encoded. Many quantum algorithms require repeated sampling to find the answer, mandating reconstruction of the same input state for every execution of an algorithm. Thus, the advantage of quantum computation can diminish due to redundant state initialization. We present a framework based on quantum forking that bypasses this fundamental issue and expedites a family of tasks that require sampling from independent quantum processes. Quantum forking propagates an input state to multiple quantum trajectories in superposition, and a weighted power sum of individual results from each trajectories is obtained in one measurement via quantum interference. The significance of our work is demonstrated via applications to implementing non-unitary quantum channels, studying entanglement and benchmarking quantum control. A proof-of-principle experiment is implemented on the IBM and Rigetti quantum cloud platforms.

[1]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[2]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[3]  Raymond Laflamme,et al.  Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit. , 2016, Physical review letters.

[4]  Michael R. Geller,et al.  Efficient error models for fault-tolerant architectures and the Pauli twirling approximation , 2013, 1305.2021.

[5]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[7]  Michele Mosca,et al.  Quantum Networks for Generating Arbitrary Quantum States , 2001, OFC 2001.

[8]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[9]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[10]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[11]  Srinivasan Arunachalam,et al.  On the robustness of bucket brigade quantum RAM , 2015, TQC.

[12]  Satyabrata Adhikari,et al.  Entanglement witness operator for quantum teleportation. , 2011, Physical review letters.

[13]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[14]  Kenneth R. Brown,et al.  Comparison of a quantum error correction threshold for exact and approximate errors , 2014, 1501.00068.

[15]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[16]  J. Vartiainen,et al.  Efficient decomposition of quantum gates. , 2003, Physical review letters.

[17]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[18]  W. Lechner,et al.  Programmable superpositions of Ising configurations , 2017, Physical Review A.

[19]  Andrei N. Soklakov,et al.  Efficient state preparation for a register of quantum bits , 2004 .

[20]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[21]  G. Long,et al.  Efficient scheme for initializing a quantum register with an arbitrary superposed state , 2001, quant-ph/0104030.

[22]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[23]  David G. Cory,et al.  Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies , 2010, 1003.2444.

[24]  Francesco Petruccione,et al.  Circuit-Based Quantum Random Access Memory for Classical Data , 2019, Scientific Reports.

[25]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[26]  Raymond Laflamme,et al.  Practical experimental certification of computational quantum gates using a twirling procedure. , 2011, Physical review letters.

[27]  Li-zhen Jiang,et al.  Robust quantum random access memory , 2012, 1201.2250.

[28]  Tony R. Martinez,et al.  Quantum associative memory , 2000, Inf. Sci..

[29]  vCaslav Brukner,et al.  Quantum-state preparation with universal gate decompositions , 2010, 1003.5760.

[30]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[31]  Dan Boneh,et al.  Quantum Operating Systems , 2017, HotOS.

[32]  Jun Li,et al.  Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor. , 2014, Physical review letters.

[33]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.