Disturbance of Cell Proliferation in Response to Mobile Phone Frequency Radiation

Disturbance of Cell Proliferation in Response to Mobile Phone Frequency Radiation The aim of study was to determine the influence of mobile phone frequency radiation on the proliferation, cytoskeleton structure, and mitotic index of V79 cells after 1 h, 2 h, and 3 h of exposure. V79 cells were cultured in standard laboratory conditions and exposed to continuous-wave (CW) RF/MW radiation of 935 MHz, electric field strength of (8.2±0.3) V m-1, and specific absorption rate (SAR) of 0.12 W kg-1. To identify proliferation kinetics, the cells were counted for each hour of exposure 24 h, 48 h, 72 h, and 96 h after respective exposures. Microtubule proteins were determined using specific immunocytochemical methods. Cell smears were analysed under a fluorescent microscope. The study included negative and positive controls. Mitotic index was determined by estimating the number of dividing cells 24 h after exposure and dividing it with the total number of cells. In comparison to the controls, cell proliferation declined in cells exposed for three hours 72 h after irradiation (p<0.05). Microtubule structure was clearly altered immediately after three hours of irradiation (p<0.05). The mitotic index in RF/MW-exposed cells did not differ from negative controls. However, even if exposure did not affect the number of dividing cells, it may have slowed down cell division kinetics as a consequence of microtubule impairment immediately after exposure. Promjene staničnog rasta kao odgovor na zračenje frekvencije mobilne telefonije Istraživanje je provedeno s namjerom utvrđivanja brzine rasta, strukture citoskeleta i mitotskog indeksa (MI) u stanicama izloženim radiofrekvencijskom/mikrovalnom (RF/MW) zračenju u trajanju od 1 h, 2 h i 3 h. Kultura V79-stanica održavana je u standardnim laboratorijskim uvjetima. Stanice su bile izložene zračenju kontinuiranih valova (CW) frekvencije 935 MHz, jakosti električnog polja od (8,2±0,3) V m-1 i prosječne brzine apsorpcije (SAR) od 0,12 W kg-1. Kako bi se odredila kinetika stanične diobe, stanice su za svaki sat izlaganja brojene tijekom četiri dana nakon zračenja. Struktura mikrotubula bila je određena imunocitokemijskom metodologijom. Stanični razmazi bili su analizirani s pomoću fluorescentnog mikroskopa. Negativno i pozitivno kontrolni uzorci stanica bili su uključeni u studiju. MI je određen brojem stanica u diobi dvadeset četiri sata nakon izlaganja. Pad staničnog rasta primijećen je u uzorcima zračenim tri sata, ali sedamdeset i dva sata nakon izlaganja (p<0,05). U odnosu na kontrolne uzorke, odmah nakon tri sata izlaganja primijećene su jasne promjene u strukturi mikrotubula (p<0,05). MI u stanicama izloženim RF/MW-zračenju nije se razlikovao od MI kontrolnih uzoraka. Čini se da je usporena kinetika diobe stanica posljedica oštećenja mikrotubula izazvanih zračenjem, što nije utjecalo na broj stanica u diobi.

[1]  I. Pavičić,et al.  Impact of 864 MHz Or 935 MHz Radiofrequency Microwave Radiation on the Basic Growth Parameters of V79 Cell Line , 2008, Acta biologica Hungarica.

[2]  Walter H. Chang,et al.  Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering , 2007, Bioelectromagnetics.

[3]  I. Trošić,et al.  Erythropoietic dynamic equilibrium in rats maintained after microwave irradiation. , 2006, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[4]  B. Modlic,et al.  Investigation of the genotoxic effect of microwave irradiation in rat bone marrow cells: in vivo exposure. , 2004, Mutagenesis.

[5]  I. Pavičić,et al.  Influence of 864 MHz electromagnetic field on growth kinetics of established cell line , 2004, Proceedings. Elmar-2004. 46th International Symposium on Electronics in Marine.

[6]  V. Kašuba,et al.  Micronucleus induction after whole-body microwave irradiation of rats. , 2002, Mutation research.

[7]  F. Jelínek,et al.  MICROTUBULES IN BIOLOGICAL CELLS AS CIRCULAR WAVEGUIDES AND RESONATORS , 2001 .

[8]  I. Trošić,et al.  Whole body microwave exposure and peripheral blood of rats: pilot study. , 2000 .

[9]  I. Trošić,et al.  Animal study on electromagnetic field biological potency. , 1999, Arhiv za higijenu rada i toksikologiju.

[10]  E. Nogales,et al.  Tubulin structure: insights into microtubule properties and functions. , 1998, Current opinion in structural biology.

[11]  B. Safiejko-Mroczka,et al.  Improved methods for preserving macromolecular structures and visualizing them by fluorescence and scanning electron microscopy. , 1995, Scanning microscopy.

[12]  N. Seemayer,et al.  Induction of C-type metaphases and aneuploidy in cultures of V79 cells exposed to extract of automobile exhaust particulates. , 1986, Mutagenesis.

[13]  Charles Polk,et al.  CRC Handbook of Biological Effects of Electromagnetic Fields , 1986 .

[14]  F. Barnes,et al.  Handbook of biological effects of electromagnetic fields , 2007 .

[15]  I. Trošić,et al.  Frequency of Micronucleated Erythrocytes in Rat Bone Marrow Exposed to 2.45?GHz Radiation , 2005 .

[16]  I. Trošić,et al.  Erythropoietic changes in rats after 2.45 GJz nonthermal irradiation. , 2004, International journal of hygiene and environmental health.

[17]  J. Elwood,et al.  Epidemiological studies of radio frequency exposures and human cancer , 2003, Bioelectromagnetics.

[18]  I. Trošić Multinucleated giant cell appearance after whole body microwave irradiation of rats. , 2001, International journal of hygiene and environmental health.

[19]  M. S. Cooper,et al.  Membrane potential perturbations induced in tissue cells by pulsed electric fields. , 1995, Bioelectromagnetics.

[20]  G. Pedersen,et al.  FDTD Calulations of the EM-field Distribution in a Microtiter Suspension Well , 1995 .

[21]  R D Phillips,et al.  The influence of electric field exposure on bone growth and fracture repair in rats. , 1983, Bioelectromagnetics.