Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities

Fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, reliability, manufacturability and cost-effectiveness. Computational fuel cell engineering (CFCE) tools that allow systematic simulation, design and optimization of fuel cell systems would facilitate the integration of such advances, allow less heavy reliance on hardware prototyping, and reduce development cycles.

[1]  Jon G. Pharoah,et al.  Computational analysis of heat and mass transfer in a micro-structured PEMFC cathode , 2006 .

[2]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[3]  Chao-Yang Wang,et al.  Large-scale simulation of polymer electrolyte fuel cells by parallel computing , 2004 .

[4]  Sandip Mazumder,et al.  Rigorous 3-D mathematical modeling of PEM fuel cells. II. Model predictions with liquid water transport , 2003 .

[5]  N. Djilali,et al.  Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers , 2006 .

[6]  Ned Djilali,et al.  A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell , 2003 .

[7]  Ned Djilali,et al.  Transport Phenomena in Polymer Electrolyte Membranes , 2005 .

[8]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[9]  Ned Djilali,et al.  Transport Phenomena in Polymer Electrolyte Membranes II. Binary Friction Membrane Model , 2005 .

[10]  Chao-Yang Wang,et al.  Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells , 2004 .

[11]  N. Djilali,et al.  APPLICATION OF MICROSCALE TECHNIQUES TO FUEL CELL SYSTEMS DESIGN , 2000 .

[12]  Adam Z. Weber,et al.  Modeling Transport in Polymer‐Electrolyte Fuel Cells , 2004 .

[13]  P. Ekdunge,et al.  Proton Conductivity of Nafion 117 as Measured by a Four‐Electrode AC Impedance Method , 1996 .

[14]  James J. McGuirk,et al.  Three-dimensional model of a complete polymer electrolyte membrane fuel cell : model formulation, validation and parametric studies , 2005 .

[15]  Kent S. Udell,et al.  Heat transfer in porous media considering phase change and capillarity—the heat pipe effect , 1985 .

[16]  S. Kjelstrup,et al.  Local and total entropy production and heat and water fluxes in a one-dimensional polymer electrolyte fuel cell. , 2005, The journal of physical chemistry. B.

[17]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[18]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[19]  Lin Wang,et al.  Performance studies of PEM fuel cells with interdigitated flow fields , 2004 .

[20]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[21]  Michael Vynnycky,et al.  Analysis of a Two-Phase Non-Isothermal Model for a PEFC , 2005 .

[22]  Ned Djilali,et al.  CFD-based modelling of proton exchange membrane fuel cells , 2005 .

[23]  Piet J. A. M. Kerkhof,et al.  A modified Maxwell-Stefan model for transport through inert membranes : the binary friction model , 1996 .

[24]  R. Datta,et al.  Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells , 2000 .

[25]  Ned Djilali,et al.  Computational model of a PEM fuel cell with serpentine gas flow channels , 2004 .

[26]  Charles Stone,et al.  From curiosity to “power to change the world®” , 2002 .

[27]  Sirivatch Shimpalee,et al.  Predicting water and current distributions in a commercial-size PEMFC , 2004 .

[28]  Dimos Poulikakos,et al.  Multiphase Transport Phenomena in the Diffusion Zone of a PEM Fuel Cell , 2005 .

[29]  Ned Djilali,et al.  Two-Phase Transport in Porous Gas Diffusion Electrodes , 2005 .

[30]  T. Zhou,et al.  Fuel Cell Performance Augmentation: Mass Transfer Enhancement , 2003 .

[31]  Ned Djilali,et al.  Non-planar architecture for proton exchange membrane fuel cells , 2001 .

[32]  Titichai Navessin,et al.  A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells , 2004 .

[33]  C. Siegel Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells , 2008 .

[34]  Fotis Stergiopoulos,et al.  The effect of the hysteresis band on power management strategies in a stand-alone power system , 2008 .

[35]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[36]  A. Faghri,et al.  Challenges and opportunities of thermal management issues related to fuel cell technology and modeling , 2005 .