Mass spectrometry and spectroscopic characterization of a tetrameric photosystem I supercomplex from Leptolyngbya ohadii, a desiccation-tolerant cyanobacterium

[1]  Haijun Liu,et al.  Biochemical and spectroscopic characterizations of the oligomeric antenna of the coral symbiotic Symbiodiniaceae Fugacium kawagutii , 2022, Photosynthesis Research.

[2]  A. Murakami,et al.  Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus , 2022, eLife.

[3]  Jimin Wang,et al.  Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation , 2021, The Journal of biological chemistry.

[4]  R. Croce,et al.  Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis , 2020, Nature Plants.

[5]  D. Bryant,et al.  Evidence that Chlorophyll f Functions Solely as an Antenna Pigment in Far-Red-Light Photosystem I from Fischerella thermalis PCC 7521. , 2020, Biochimica et biophysica acta. Bioenergetics.

[6]  P. Fromme,et al.  The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis , 2020, Science Advances.

[7]  N. Miyazaki,et al.  Structural basis for the adaptation and function of chlorophyll f in photosystem I , 2020, Nature Communications.

[8]  Robert Eugene Blankenship,et al.  Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. , 2020, Biochimica et biophysica acta. Bioenergetics.

[9]  M. Ikeuchi,et al.  Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy , 2019, Nature Communications.

[10]  P. Struik,et al.  Photosystem II core quenching in desiccated Leptolyngbya ohadii , 2019, Photosynthesis Research.

[11]  A. Kaplan,et al.  Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing , 2019, Molecular ecology.

[12]  M. Gross,et al.  Phycobilisomes Harbor FNRL in Cyanobacteria , 2019, mBio.

[13]  M. Li,et al.  Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria , 2019, Nature Plants.

[14]  D. Bryant,et al.  Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes , 2019, Photosynthesis Research.

[15]  Sang Ki Park,et al.  N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2 , 2018, The Journal of Biological Chemistry.

[16]  Chao Liu,et al.  Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine , 2018, Nature Biotechnology.

[17]  S. Santabarbara,et al.  Photochemistry beyond the red limit in chlorophyll f–containing photosystems , 2018, Science.

[18]  U. Raviv,et al.  Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria , 2017, Proceedings of the National Academy of Sciences.

[19]  D. Bryant,et al.  Light regulation of pigment and photosystem biosynthesis in cyanobacteria. , 2017, Current opinion in plant biology.

[20]  Mingkun Yang,et al.  Lysine Acetylome Analysis Reveals Photosystem II Manganese-stabilizing Protein Acetylation is Involved in Negative Regulation of Oxygen Evolution in Model Cyanobacterium Synechococcus sp. PCC 7002* , 2017, Molecular & Cellular Proteomics.

[21]  A. Kaplan,et al.  What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect , 2017, Environmental microbiology.

[22]  Gabriel F. Dorlhiac,et al.  Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I , 2017, Biophysical journal.

[23]  M. Gross,et al.  Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation. , 2016, Biochemistry.

[24]  A. Kaplan,et al.  Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation. , 2016, Environmental microbiology.

[25]  D. Bryant,et al.  Adaptive and acclimative responses of cyanobacteria to far-red light. , 2015, Environmental microbiology.

[26]  A. Kaplan,et al.  An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. , 2015, Biochimica et biophysica acta.

[27]  H. Makita,et al.  Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77 K , 2015, FEBS letters.

[28]  Yinjie J. Tang,et al.  Using photosystem I as a reporter protein for ¹³C analysis in a coculture containing cyanobacterium and a heterotrophic bacterium. , 2015, Analytical biochemistry.

[29]  D. Bryant,et al.  Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light , 2014, Science.

[30]  A. Krieger-Liszkay,et al.  Regulation of Photosynthetic Electron Transport and Photoinhibition , 2014, Current protein & peptide science.

[31]  M. Brecht,et al.  Long-wavelength chlorophylls in photosystem I of cyanobacteria: Origin, localization, and functions , 2014, Biochemistry (Moscow).

[32]  E. Boekema,et al.  Characterization and Evolution of Tetrameric Photosystem I from the Thermophilic Cyanobacterium Chroococcidiopsis sp TS-821[C][W][OPEN] , 2014, Plant Cell.

[33]  M. Ikeuchi,et al.  Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria , 2014, Proceedings of the National Academy of Sciences.

[34]  Ruedi Aebersold,et al.  Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline , 2013, Nature Protocols.

[35]  M. Firestone,et al.  Responses of soil bacterial and fungal communities to extreme desiccation and rewetting , 2013, The ISME Journal.

[36]  Robert Eugene Blankenship,et al.  Low-temperature spectroscopic properties of the peridinin-chlorophyll a-protein (PCP) complex from the coral symbiotic dinoflagellate Symbiodinium. , 2013, The journal of physical chemistry. B.

[37]  É. Hideg,et al.  Production, detection, and signaling of singlet oxygen in photosynthetic organisms. , 2013, Antioxidants & redox signaling.

[38]  Yong J. Kil,et al.  Byonic: Advanced Peptide and Protein Identification Software , 2012, Current protocols in bioinformatics.

[39]  F. Rappaport,et al.  Back‐reactions, short‐circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O2 , 2012, FEBS letters.

[40]  E. Schlodder,et al.  Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700. , 2011, Biochimica et biophysica acta.

[41]  Felix M. Ho,et al.  Modeling Photosystem I with the alternative reaction center protein PsaB2 in the nitrogen fixing cyanobacterium Nostoc punctiforme. , 2011, Biochimica et biophysica acta.

[42]  Robert Eugene Blankenship,et al.  Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. , 2011, Biochimica et biophysica acta.

[43]  M. Ekman,et al.  Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: potentials and implications for biological engineering. , 2011, Journal of proteome research.

[44]  M. Ikeuchi,et al.  Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. , 2011, Plant & cell physiology.

[45]  V. Shuvalov,et al.  Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. , 2010, Biochimica et biophysica acta.

[46]  E. Aro,et al.  Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis , 2009, Cellular and Molecular Life Sciences.

[47]  Y. Kashino,et al.  Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. , 2008, Plant & cell physiology.

[48]  Ilka Wittig,et al.  High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes* , 2007, Molecular & Cellular Proteomics.

[49]  S. Santabarbara,et al.  Bidirectional electron transfer in photosystem I: replacement of the symmetry-breaking tryptophan close to the PsaB-bound phylloquinone A1B with a glycine residue alters the redox properties of A1B and blocks forward electron transfer at cryogenic temperatures. , 2006, Biochimica et biophysica acta.

[50]  W. Lubitz,et al.  Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. , 2006, Biophysical journal.

[51]  A. Kaplan,et al.  Inactivation of photosynthetic electron flow during desiccation of desert biological sand crusts and Microcoleus sp.-enriched isolates , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[52]  L. Valkunas,et al.  Red Chlorophylls in the Exciton Model of Photosystem I , 2005, Photosynthesis Research.

[53]  E. Schlodder,et al.  P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. , 2005, Biochimica et biophysica acta.

[54]  Rienk van Grondelle,et al.  Global and target analysis of time-resolved spectra. , 2004, Biochimica et biophysica acta.

[55]  J. Dekker,et al.  Steady-state polarized light spectroscopy of isolated Photosystem I complexes , 1993, Photosynthesis Research.

[56]  Mark E. Miller,et al.  Response of desert biological soil crusts to alterations in precipitation frequency , 2004, Oecologia.

[57]  W. Lubitz,et al.  Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. , 2003, Biophysical journal.

[58]  K. Brettel,et al.  Control of Electron Transport in Photosystem I by the Iron-Sulfur Cluster FX in Response to Intra- and Intersubunit Interactions* , 2003, Journal of Biological Chemistry.

[59]  Robert Eugene Blankenship,et al.  Excitation Dynamics in the Core Antenna of PS I from Chlamydomonas reinhardtii CC 2696 at Room Temperature , 2001 .

[60]  E Schlodder,et al.  Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. , 2001, Biophysical journal.

[61]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[62]  Y. Jung,et al.  The Cysteine-proximal Aspartates in the FX-binding Niche of Photosystem I , 1999, The Journal of Biological Chemistry.

[63]  J. Sun,et al.  Isolation and functional study of photosystem I subunits in the cyanobacterium Synechocystis sp. PCC 6803. , 1998, Methods in enzymology.

[64]  R. Monshouwer,et al.  Polarized site-selected fluorescence spectroscopy of isolated Photosystem I particles , 1994 .

[65]  F. Lytle,et al.  Excited singlet‐state lifetimes of hydrated chlorophyll aggregates , 1985 .