FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation

[1]  Tomi Pastinen,et al.  Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate , 2018, Nature Genetics.

[2]  T. Evans,et al.  Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. , 2017, Cell stem cell.

[3]  J. Wysocka,et al.  Modification of enhancer chromatin: what, how, and why? , 2013, Molecular cell.

[4]  M. Tomishima,et al.  Discovery of a drug candidate for GLIS3-associated diabetes , 2018, Nature Communications.

[5]  James D. Johnson,et al.  Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells , 2014, Nature Biotechnology.

[6]  Zengrong Zhu,et al.  An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. , 2014, Cell stem cell.

[7]  Uma M. Muthurajan,et al.  Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. , 2009, Genes & development.

[8]  J. Carroll,et al.  FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3 , 2016, bioRxiv.

[9]  S. Xuan,et al.  GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling , 2016, Development.

[10]  J. A. Maguire,et al.  GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic β Cells , 2017, Stem cell reports.

[11]  V. Tabar,et al.  Pluripotent stem cells in regenerative medicine: challenges and recent progress , 2014, Nature Reviews Genetics.

[12]  R. Maehr,et al.  Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development , 2019, Cell reports.

[13]  M. Buck,et al.  Chromatin accessibility: a window into the genome , 2014, Epigenetics & Chromatin.

[14]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[15]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[16]  Sridhar Hannenhalli,et al.  The evolution of Fox genes and their role in development and disease , 2009, Nature Reviews Genetics.

[17]  Zhaoyu Li,et al.  Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation , 2012, Cell.

[18]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[19]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[20]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[21]  H. Edlund,et al.  Insulin-promoter-factor 1 is required for pancreas development in mice , 1994, Nature.

[22]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[23]  Frank R. Lin,et al.  Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. , 2002, Molecular cell.

[24]  A. Hattersley,et al.  GATA4 Mutations Are a Cause of Neonatal and Childhood-Onset Diabetes , 2014, Diabetes.

[25]  A. Hattersley,et al.  GATA6 haploinsufficiency causes pancreatic agenesis in humans , 2011, Nature Genetics.

[26]  K. Kaestner,et al.  Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. , 2008, Genes & development.

[27]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[28]  M. Helmrath,et al.  The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas , 2015, Diabetes.

[29]  S. Xuan,et al.  Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. , 2012, The Journal of clinical investigation.

[30]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[31]  C. Leslie,et al.  Memory of Inflammation in Regulatory T Cells , 2016, Cell.

[32]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[33]  K. Kaestner,et al.  Foxa2 is required for the differentiation of pancreatic α-cells , 2005 .

[34]  Xiaobo Zhou,et al.  Modeling co-occupancy of transcription factors using chromatin features , 2015, Nucleic acids research.

[35]  Makiko Iwafuchi‐Doi,et al.  Pioneer transcription factors in cell reprogramming , 2014, Genes & development.

[36]  B. Soria,et al.  GATA4 and GATA6 control mouse pancreas organogenesis. , 2012, The Journal of clinical investigation.

[37]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[38]  Bing Ren,et al.  Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. , 2015, Cell stem cell.

[39]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[40]  Danwei Huangfu,et al.  Human pluripotent stem cells: an emerging model in developmental biology , 2013, Development.

[41]  Jonathan P. Katz,et al.  Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. , 1999, Genes & development.

[42]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[43]  Clifford A. Meyer,et al.  FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription , 2008, Cell.

[44]  Danwei Huangfu,et al.  Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. , 2016, Cell stem cell.

[45]  Ali Asadi,et al.  The Role of ARX in Human Pancreatic Endocrine Specification , 2015, PloS one.

[46]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[47]  D. Melton,et al.  Generation of Functional Human Pancreatic β Cells In Vitro , 2014, Cell.

[48]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[49]  Michael A. Beer,et al.  Genome-scale screens identify JNK/JUN signaling as a barrier for pluripotency exit and endoderm differentiation , 2019, Nature Genetics.

[50]  William L. Clarke,et al.  Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence , 1997, Nature Genetics.

[51]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[52]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[53]  P. Scacheri,et al.  Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. , 2011, Genome research.

[54]  S. Duncan,et al.  GATA6 is essential for endoderm formation from human pluripotent stem cells , 2017, Biology Open.

[55]  S. Burley,et al.  Binding of the winged‐helix transcription factor HNF3 to a linker histone site on the nucleosome , 1998, The EMBO journal.

[56]  A. Hattersley,et al.  GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation , 2019, Stem cell reports.

[57]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[58]  Klaus H. Kaestner,et al.  Targeted Disruption of the Gene Encoding Hepatocyte Nuclear Factor 3γ Results in Reduced Transcription of Hepatocyte-Specific Genes , 1998, Molecular and Cellular Biology.

[59]  David R. Kelley,et al.  Genetic determinants and epigenetic effects of pioneer factor occupancy , 2018, Nature Genetics.

[60]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.