Adaptive multiresolution methods

These lecture notes present adaptive multiresolution schemes for evolutionary PDEs in Cartesian geometries. The discretization schemes are based either on finite volume or finite difference schemes. The concept of multiresolution analyses including Harten's approach for point and cell aver- ages is described in some detail. Then the sparse point representation method is discussed. Different strategies for adaptive time-stepping, like local scale dependent time stepping and time step control are presented. Numerous numerical examples in one, two and three space dimensions validate the adaptive schemes and illustrate the accuracy and the gain in computational efficiency in terms of CPU time and memory requirements. Another aspect, modeling of turbulent flows using multiresolution decompositions, the so-called Coherent Vortex Simulation ansatz is also described and examples are given for computations of three-dimensional weakly compressible mixing layers. Most of the material is assembled and adapted from previous publications (21,23-25,57,58).

[1]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[2]  Clint Dawson,et al.  High Resolution Schemes for Conservation Laws with Locally Varying Time Steps , 2000, SIAM J. Sci. Comput..

[3]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[4]  P. Schröder,et al.  Spherical wavelets: Efficiently representing functions on a sphere , 2000 .

[5]  Kai Schneider,et al.  Space--time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations , 2009 .

[6]  Jacques Periaux,et al.  Wavelet methods in computational fluid dynamics , 1993 .

[7]  Kai Schneider,et al.  An adaptive multiresolution method for combustion problems: application to flame ball–vortex interaction , 2005 .

[8]  Kai Schneider,et al.  Coherent Vortex Simulation (CVS), A Semi-Deterministic Turbulence Model Using Wavelets , 2001 .

[9]  Kai Schneider,et al.  An adaptive multiresolution method for parabolic PDEs with time-step control , 2009 .

[10]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[11]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[12]  Philippe R. B. Devloo,et al.  Wavelets and adaptive grids for the discontinuous Galerkin method , 2005, Numerical Algorithms.

[13]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[14]  Oleg V. Vasilyev,et al.  Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations , 2006, J. Comput. Phys..

[15]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[16]  Pierre Sagaut,et al.  Multiscale And Multiresolution Approaches In Turbulence , 2006 .

[17]  Eli Turkel,et al.  Dissipative two-four methods for time-dependent problems , 1976 .

[18]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[19]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[20]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[21]  Ralf Deiterding,et al.  Construction and Application of an AMR Algorithm for Distributed Memory Computers , 2005 .

[22]  Anamaria Gomide,et al.  Grid structure impact in sparse point representation of derivatives , 2010, J. Comput. Appl. Math..

[23]  Vincent Guinot,et al.  Finite Volume Methods for Hyperbolic Systems , 2010 .

[24]  Oleg V. Vasilyev,et al.  Second-generation wavelet collocation method for the solution of partial differential equations , 2000 .

[25]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[26]  Oleg V. Vasilyev,et al.  A Brinkman penalization method for compressible flows in complex geometries , 2007, J. Comput. Phys..

[27]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[28]  A. W. Vreman,et al.  Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer , 1995 .

[29]  Gerald Warnecke,et al.  A Class of High Resolution Difference Schemes for Nonlinear Hamilton-Jacobi Equations with Varying Time and Space Grids , 2005, SIAM J. Sci. Comput..

[30]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[31]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[32]  Sidi Mahmoud Kaber,et al.  Fully adaptive multiresolution nite volume s hemes for onservation , 2000 .

[33]  M. Liou A Sequel to AUSM , 1996 .

[34]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[35]  Sônia M. Gomes,et al.  A Fully Adaptive Multiresolution Scheme for Shock Computations , 2001 .

[36]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[37]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[38]  Jochen Fröhlich,et al.  An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs , 1997 .

[39]  Per Lötstedt,et al.  Space–Time Adaptive Solution of First Order PDES , 2006, J. Sci. Comput..

[40]  Kai Schneider,et al.  Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint , 2007 .

[41]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.

[42]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[43]  Kai Schneider,et al.  An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..

[44]  N. Mansour Large-eddy simulation of a turbulent mixing layer , 1978 .

[45]  S. Osher,et al.  Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .

[46]  Tong Zhang,et al.  Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems , 1990 .

[47]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[48]  Kai Schneider,et al.  Adaptive multiresolution or adaptive mesh refinement? A case study for 2D Euler equations , 2009, ESAIM: Proceedings.

[49]  Barna L. Bihari,et al.  Multiresolution Schemes for Conservation Laws with Viscosity , 1996 .

[50]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[51]  Kai Schneider,et al.  Adaptive Wavelet Simulation of a Flow around an Impulsively Started Cylinder Using Penalisation , 2002 .

[52]  Sônia M. Gomes,et al.  Adaptive wavelet representation and differentiation on block-structured grids , 2003 .

[53]  Ralf Deiterding,et al.  Parallel adaptive simulation of multi-dimensional detonation structures , 2003 .

[54]  Kai Schneider,et al.  Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods , 2010, J. Comput. Phys..

[55]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[56]  P. Pinho,et al.  Interpolating Wavelets and Adaptive Finite Difference Schemes for Solving Maxwell's Equations: The Effects of Gridding , 2007, IEEE Transactions on Magnetics.

[57]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[58]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[59]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[60]  Nira Dyn,et al.  Multiresolution Schemes on Triangles for Scalar Conservation Laws , 2000 .

[61]  Kai Schneider,et al.  Coherent vortex extraction in 3D homogeneous turbulence: comparison between orthogonal and biorthogonal wavelet decompositions , 2005 .

[62]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[63]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[64]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.

[65]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[66]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[67]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[68]  S. Mallat A wavelet tour of signal processing , 1998 .

[69]  Sidi Mahmoud Kaber,et al.  Adaptive multiresolution for finite volume solutions of gas dynamics , 2003 .

[70]  Johan Waldén A general adaptive solver for hyperbolic PDEs based on filter bank subdivisions , 2000 .

[71]  Rémi Abgrall,et al.  Multiresolution Representation in Unstructured Meshes , 1998 .

[72]  S. Mallat,et al.  A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .

[73]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[74]  Siegfried Müller,et al.  Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..

[75]  O. Vasilyev,et al.  Stochastic coherent adaptive large eddy simulation method , 2002 .

[76]  Jürgen Warnatz,et al.  Numerical Methods in Laminar Flame Propagation , 1982 .

[77]  Kai Schneider,et al.  Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets , 2005, Journal of Fluid Mechanics.

[78]  M. Holmström Wavelet Based Methods for Time Dependent PDEs , 1997 .