Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems

We present a class of non-standard numerical schemes which are modifications of the discrete gradient method. They preserve the energy integral exactly (up to the round-off error). The considered class contains locally exact discrete gradient schemes and integrators of arbitrary high order. In numerical experiments we compare our integrators with some other numerical schemes, including the standard discrete gradient method, the leap-frog scheme and a symplectic scheme of 4th order. We study the error accumulation for very long time and the conservation of the energy integral.

[1]  G. Quispel,et al.  Integral-preserving integrators , 2004 .

[2]  Jan L. Cieslinski Locally exact modifications of numerical integrators , 2011, ArXiv.

[3]  S. Blanes High order numerical integrators for differential equations using composition and processing of low order methods , 2001 .

[4]  Jan L. Cieslinski,et al.  On the exact discretization of the classical harmonic oscillator equation , 2009, ArXiv.

[5]  J. Cieśliński,et al.  Long-time behaviour of discretizations of the simple pendulum equation , 2008, 0810.1378.

[7]  T. Itoh,et al.  Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .

[8]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[9]  Jan L. Cieslinski,et al.  Comment on ‘Conservative discretizations of the Kepler motion’ , 2009, ArXiv.

[10]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[11]  J. Cieśliński,et al.  On simulations of the classical harmonic oscillator equation by difference equations , 2005, physics/0507182.

[12]  Ravi P. Agarwal,et al.  Difference equations and inequalities , 1992 .

[13]  G. S. Turner,et al.  Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .

[14]  Ernst Hairer,et al.  Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples , 2004 .

[15]  Renfrey B. Potts Differential and Difference Equations , 1982 .

[16]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[17]  Nicolas Robidoux,et al.  UNIFIED APPROACH TO HAMILTONIAN SYSTEMS, POISSON SYSTEMS, GRADIENT SYSTEMS, AND SYSTEMS WITH LYAPUNOV FUNCTIONS OR FIRST INTEGRALS , 1998 .

[18]  E. Hairer,et al.  Accurate long-term integration of dynamical systems , 1995 .

[19]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[20]  Jan L. Cieslinski,et al.  How to improve the accuracy of the discrete gradient method in the one-dimensional case , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[22]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[23]  G. Quispel,et al.  Solving ODEs numerically while preserving a first integral , 1996 .

[24]  R. Mickens Nonstandard Finite Difference Models of Differential Equations , 1993 .

[25]  Donald Greenspan,et al.  Discrete mechanics—A general treatment , 1974 .

[26]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.