Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü

Abstract This work presents chaos synchronization between two different chaotic systems by using active control. This technique is applied to achieve chaos synchronization for a new system and each of the dynamical systems Lorenz, Chen and Lu. Numerical simulations are also shown to verify the results.

[1]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[2]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[3]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[4]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[5]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[6]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[7]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[8]  Hendrik Richter,et al.  Controlling the Lorenz system: combining global and local schemes , 2001 .

[9]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[10]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[11]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[12]  Guanrong Chen,et al.  The compound structure of a new chaotic attractor , 2002 .

[13]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[14]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.

[15]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[16]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[17]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[18]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[19]  Tsung-Nan Lin,et al.  The Stability of Chaos Synchronization of the Japanese Attractors and its Application , 2003 .

[20]  E. Lorenz Deterministic nonperiodic flow , 1963 .