Polymer solar cells

This article reviews the motivations for developing polymer-based photovoltaics and describes some of the material systems used. Current challenges are identified, and some recent developments in the field are outlined. In particular, recent work to image and control nanostructure in polymer-based solar cells is reviewed, and very recent progress is described using the unique properties of organic semiconductors to develop strategies that may allow the Shockley–Queisser limit to be broken in a simple photovoltaic cell.

[1]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[2]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[3]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[4]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[5]  C. Townsend,et al.  Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics. , 2010, Journal of the American Chemical Society.

[6]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[7]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[8]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[9]  A. S. Dhoot,et al.  Vertically segregated hybrid blends for photovoltaic devices with improved efficiency , 2005 .

[10]  Neil C. Greenham,et al.  Conjugated‐Polymer Blends for Optoelectronics , 2009 .

[11]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[12]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[13]  P. Midgley,et al.  Morphological study of nanoparticle-polymer solar cells using high-angle annular dark-field electron tomography. , 2011, Nano letters.

[14]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[15]  Josef Michl,et al.  Singlet fission. , 2010, Chemical reviews.

[16]  N. Greenham,et al.  Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer. , 2011, Nano letters.

[17]  Mark W. B. Wilson,et al.  Singlet exciton fission-sensitized infrared quantum dot solar cells. , 2012, Nano letters.

[18]  Volker Schmidt,et al.  The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. , 2009, Nature materials.

[19]  Olle Inganäs,et al.  Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. , 2009, Nano letters.

[20]  Neil C. Greenham,et al.  PHOTOINDUCED ELECTRON TRANSFER FROM CONJUGATED POLYMERS TO CDSE NANOCRYSTALS , 1999 .

[21]  Jenny Clark,et al.  Ultrafast dynamics of exciton fission in polycrystalline pentacene. , 2011, Journal of the American Chemical Society.

[22]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .

[23]  Richard H. Friend,et al.  Barrier‐Free Electron–Hole Capture in Polymer Blend Heterojunction Light‐Emitting Diodes , 2003 .

[24]  Richard H. Friend,et al.  Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes , 2007 .

[25]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[26]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[27]  David J. C. MacKay Sustainable Energy - Without the Hot Air , 2008 .

[28]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[29]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[30]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[31]  Akshay Rao,et al.  Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. , 2010, Journal of the American Chemical Society.

[32]  International Journal of Social Ecology and Sustainable Development , 2022 .

[33]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[34]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[35]  J. Blin,et al.  Are biofuels a factor of sustainable development in a food insecurity context in Africa? : Case study of Burkina Faso , 2012 .

[36]  Tom Cherrett,et al.  Reverse logistics for sustainable waste management processes , 2012 .

[37]  Gijsbertus de With,et al.  Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. , 2009, Nano letters.

[38]  D. Ginley,et al.  Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. , 2010, Nano letters.