Finite difference methods and their physical constraints for the fractional klein‐kramers equation

Incorporating subdiffusive mechanisms into the Klein-Kramers formalism leads to the fractional Klein-Kramers equation. Then, the equation can effectively describe subdiffusion in the presence of an external force field in the phase space. This article presents the finite difference methods for numerically solving the fractional Klein-Kramers equation and does the detailed stability and error analyses. The stability condition, mvβ ≤ 16, shows the ratio between the kinetic energy of the particle and the temperature of the fluid can not be too large, which well agrees with the physical property of the subdiffusive particle, we call it “physical constraint.” The numerical examples are provided to verify the theoretical results on rate of convergence. Moreover, we simulate the fractional Klein-Kramers dynamics and the simulation results further confirm the effectiveness of our numerical schemes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1561–1583, 2010

[1]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[2]  Tao Tang,et al.  Combined Hermite spectral-finite difference method for the Fokker-Planck equation , 2002, Math. Comput..

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[6]  R. Haydock,et al.  Vector continued fractions using a generalized inverse , 2003, math-ph/0310041.

[7]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[8]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[9]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[10]  B. Guo,et al.  Composite generalized Laguerre--Legendre pseudospectral method for Fokker--Planck equation in an infinite channel , 2008 .

[11]  J. Klafter,et al.  Subdiffusive transport close to thermal equilibrium: from the langevin equation to fractional diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[13]  C. Lubich Discretized fractional calculus , 1986 .

[14]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[15]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[16]  M. Magdziarz,et al.  Numerical approach to the fractional Klein-Kramers equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[18]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[19]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[20]  Vijay P. Singh,et al.  Numerical Solution of Fractional Advection-Dispersion Equation , 2004 .

[21]  J. Klafter,et al.  From a Generalized Chapman−Kolmogorov Equation to the Fractional Klein−Kramers Equation† , 2000 .

[22]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[23]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[24]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .