Biomanufacturing of CdS quantum dots

Nature provides powerful but as-yet largely unharnessed methods for low-cost, green synthesis of inorganic functional materials such as quantum dots. These materials have diverse applications from medicine to renewable energy. Harnessing nature's unique ability to achieve cost effective and scalable manufacturing solutions with reduced environmental impact is integral to realizing a future biomanufacturing economy. To address this challenge, a bacterial strain has been engineered to enable biosynthesis of CdS nanocrystals with extrinsic crystallite size control in the quantum confinement range. This strain yields extracellular, water-soluble quantum dots from low-cost precursors at ambient temperatures and pressure. The biomanufacturing approach demonstrated here produces CdS semiconductor nanocrystals with associated size-dependent band gap and photoluminescent properties.

[1]  J. Keasling,et al.  Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene , 2001, Applied Microbiology and Biotechnology.

[2]  D. Morse,et al.  Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles , 2012, Proceedings of the National Academy of Sciences.

[3]  Benjamin Gilbert,et al.  Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles , 2007, Science.

[4]  Soumik Siddhanta,et al.  Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing: , 2012 .

[5]  G. Ozin,et al.  Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. , 2012, Nano letters.

[6]  V. Kumar,et al.  One-pot room temperature novel synthesis of water-soluble CdS nanotriangles via green route , 2014 .

[7]  J. M. Dow,et al.  The versatility and adaptation of bacteria from the genus Stenotrophomonas , 2009, Nature Reviews Microbiology.

[8]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[9]  A. Naumenko,et al.  Biosynthesis of luminescent CdS quantum dots using plant hairy root culture , 2014, Nanoscale Research Letters.

[10]  S. Mann,et al.  Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis , 1993, Science.

[11]  K. Bourzac Quantum dots go on display , 2013, Nature.

[12]  G. Luther,et al.  Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions , 2011 .

[13]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[14]  Guilford Jones,et al.  Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism , 1983 .

[15]  Jiayu Zhang,et al.  Lattice contraction in free-standing CdSe nanocrystals , 2002 .

[16]  Y. Qian,et al.  Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature , 2002 .

[17]  K. G. Gopchandran,et al.  Aqueous synthesis and characterization of CdS, CdS:Zn(2+) and CdS:Cu(2+) quantum dots. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[18]  Xiaogang Peng,et al.  Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor , 2010 .

[19]  P. Reiss,et al.  Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. , 2011, ACS nano.

[20]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[21]  George Georgiou,et al.  Viral assembly of oriented quantum dot nanowires , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[23]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[24]  W. Achouak,et al.  Heavy Metal Tolerance in Stenotrophomonas maltophilia , 2008, PloS one.

[25]  E. Spoerke,et al.  Influence of Engineered Peptides Cadmium Sulfide Nanocrystals , 2007 .

[26]  Y. Khalavka,et al.  Effect of the composition of the reaction mixture on the preparation of L-cysteine-stabilized CdS nanoparticles and their optical properties , 2011 .

[27]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[28]  K. Sanderson Quantum dots go large , 2009, Nature.

[29]  Hongjuan Bai,et al.  Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using ImmobilizedRhodobacter sphaeroides , 2009, Nanoscale research letters.

[30]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[31]  J. Keasling,et al.  Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture , 1997, Applied and environmental microbiology.

[32]  D. Pang,et al.  Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots , 2009 .

[33]  G. Zeng,et al.  Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. , 2014, Colloids and surfaces. B, Biointerfaces.

[34]  Li Li,et al.  Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. , 2013, ACS nano.

[35]  B. Collao,et al.  Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. , 2014, Journal of biotechnology.

[36]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[37]  Yueqing Gu,et al.  Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells , 2014 .

[38]  A. Belcher,et al.  Bacterial biosynthesis of cadmium sulfide nanocrystals. , 2004, Chemistry & biology.

[39]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[40]  A. Saha,et al.  Size tunable synthesis of cysteine-capped CdS nanoparticles by γ-irradiation , 2006 .

[41]  Chaoqing Dong,et al.  Measurements for molar extinction coefficients of aqueous quantum dots. , 2010, The Analyst.

[42]  A. Wan,et al.  Synthesis of near-infrared quantum dots in cultured cancer cells. , 2014, ACS applied materials & interfaces.

[43]  V. Bulović,et al.  Blue luminescence from (CdS)ZnS core-shell nanocrystals. , 2004, Angewandte Chemie.

[44]  A. Zayats,et al.  Biosynthesis of luminescent quantum dots in an earthworm. , 2013, Nature nanotechnology.

[45]  A. K. Suresh Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[46]  D. Negi,et al.  Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine , 2008, Nanotechnology.

[47]  Seung Hyun Kang,et al.  Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. , 2008, Angewandte Chemie.

[48]  E. Blanco,et al.  Preparation and Characterization of Fluorescent CdS Quantum Dots used for the Direct Detection of GST Fusion Proteins , 2012 .

[49]  P. de Micco,et al.  A Simple Method for Selective Isolation of Stenotrophomonas maltophilia from Environmental Samples , 1995, Applied and environmental microbiology.

[50]  R. Mehra,et al.  Metal ion resistance in fungi: Molecular mechanisms and their regulated expression , 1991, Journal of cellular biochemistry.