Constructing Infinitely Many Attractors in a Programmable Chaotic Circuit

In this paper, we modify the Sprott M chaotic system to provide infinitely many co-existing attractors by replacing the offset boosting parameter with a periodic function giving what we call a self-reproducing system. Consequently, a chaotic signal with either polarity can be obtained by selecting different initial conditions. Various periodic functions are introduced in the same offset-boostable system for producing coexisting attractors. We used a field programmable analog array to construct a programmable chaotic circuit, and the predicted attractors were observed on an oscilloscope.

[1]  Zhigang Zeng,et al.  Multistability of Recurrent Neural Networks With Time-varying Delays and the Piecewise Linear Activation Function , 2010, IEEE Transactions on Neural Networks.

[2]  Qiang Lai,et al.  Research on a new 3D autonomous chaotic system with coexisting attractors , 2016 .

[3]  Julien Clinton Sprott,et al.  Infinite Multistability in a Self-Reproducing Chaotic System , 2017, Int. J. Bifurc. Chaos.

[4]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[5]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Luigi Fortuna,et al.  Field Programmable Analog Array to Implement a Programmable Chua's Circuit , 2005, Int. J. Bifurc. Chaos.

[7]  Cihan Karakuzu,et al.  Neural identification of dynamic systems on FPGA with improved PSO learning , 2012, Appl. Soft Comput..

[8]  Dean R. D'Mello,et al.  Design Approaches to Field-Programmable Analog Integrated Circuits , 1998 .

[9]  Jinhu Lu,et al.  On Cryptanalysis of Fridrich's chaotic image encryption scheme , 2016, ArXiv.

[10]  Qiang Lai,et al.  Generating Multiple Chaotic Attractors from Sprott B System , 2016, Int. J. Bifurc. Chaos.

[11]  Chen Gang,et al.  A new image encryption algorithm , 2004 .

[12]  Julien Clinton Sprott,et al.  Hypogenetic chaotic jerk flows , 2016 .

[13]  Jacques Kengne,et al.  Coexistence of Multiple Attractors and Crisis Route to Chaos in a Novel Chaotic Jerk Circuit , 2016, Int. J. Bifurc. Chaos.

[14]  Xinghuo Yu,et al.  Design and Implementation of Grid Multiwing Hyperchaotic Lorenz System Family via Switching Control and Constructing Super-Heteroclinic Loops , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Ying-Cheng Lai,et al.  Multistability, chaos, and random signal generation in semiconductor superlattices. , 2016, Physical review. E.

[16]  François Sanchez,et al.  Multistability and hysteresis phenomena in passively mode-locked fiber lasers , 2005 .

[17]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[18]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[19]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[20]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[21]  Bocheng Bao,et al.  Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability , 2017 .

[22]  Julien Clinton Sprott,et al.  Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.

[23]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[24]  Gang Hu,et al.  Chaos-based secure communications in a large community. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jia-Ming Liu,et al.  Chaotic radar using nonlinear laser dynamics , 2004 .

[26]  Julien Clinton Sprott,et al.  Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.

[27]  Guangyi Wang,et al.  Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria , 2018, Commun. Nonlinear Sci. Numer. Simul..

[28]  M Laurent,et al.  Multistability: a major means of differentiation and evolution in biological systems. , 1999, Trends in biochemical sciences.

[29]  Sailing He,et al.  A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators , 2003 .

[30]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[31]  F. Arecchi,et al.  Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser , 1982 .

[32]  Hucheng He,et al.  Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback , 2008, IEEE Photonics Technology Letters.

[33]  Jacques Kengne,et al.  Dynamical analysis of a simple autonomous jerk system with multiple attractors , 2016 .

[34]  A. Ganopolski,et al.  Multistability and critical thresholds of the Greenland ice sheet , 2010 .

[35]  C. Chee,et al.  Secure digital communication using controlled projective synchronisation of chaos , 2005 .

[36]  Xing Chen,et al.  The application of chaotic oscillators to weak signal detection , 1999, IEEE Trans. Ind. Electron..

[37]  Qiang Lai,et al.  Coexisting attractors generated from a new 4D smooth chaotic system , 2016 .

[38]  Zhiguo Shi,et al.  AMBIGUITY FUNCTIONS OF DIRECT CHAOTIC RADAR EMPLOYING MICROWAVE CHAOTIC , 2007 .

[39]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[40]  Julien Clinton Sprott,et al.  Linearization of the Lorenz system , 2015 .

[41]  Recai Kiliç,et al.  Programmable design and implementation of a chaotic system utilizing multiple nonlinear functions , 2010 .

[42]  Nikolay V. Kuznetsov,et al.  Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems , 2011 .

[43]  Z. Guan,et al.  Chaos-based image encryption algorithm ✩ , 2005 .

[44]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[45]  Zhouchao Wei,et al.  Hidden chaotic attractors in a class of two-dimensional maps , 2016 .

[46]  Preecha P. Yupapin,et al.  Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer , 2007 .

[47]  Julien Clinton Sprott,et al.  A New Piecewise Linear Hyperchaotic Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[48]  Recai Kiliç,et al.  Reconfigurable Implementations of Chua's Circuit , 2009, Int. J. Bifurc. Chaos.

[49]  Ned J. Corron,et al.  A new approach to communications using chaotic signals , 1997 .

[50]  David T. J. Liley,et al.  Chaos and generalised multistability in a mesoscopic model of the electroencephalogram , 2009 .

[51]  Tomasz Kapitaniak,et al.  Multistability: Uncovering hidden attractors , 2015, The European Physical Journal Special Topics.

[52]  J. C. Sprott,et al.  Asymmetric Bistability in the R\"{o}ssler System , 2017 .

[53]  C Zhou,et al.  Extracting messages masked by chaotic signals of time-delay systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Julien Clinton Sprott,et al.  ASYMMETRIC BISTABILITY IN THE RÖSSLER SYSTEM ∗ , 2017 .

[55]  Xiaohua Zhu,et al.  Principles of Chaotic Signal Radar , 2007, Int. J. Bifurc. Chaos.

[56]  Xinghuo Yu,et al.  Generating Grid Multiwing Chaotic Attractors by Constructing Heteroclinic Loops Into Switching Systems , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[57]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[58]  Julien Clinton Sprott,et al.  Constructing chaotic systems with conditional symmetry , 2017 .

[59]  Huagan Wu,et al.  Coexisting infinitely many attractors in active band-pass filter-based memristive circuit , 2016 .

[60]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[61]  Min Xiao,et al.  Optical multistability in three-level atoms inside an optical ring cavity. , 2003, Physical review letters.

[62]  B. Bao,et al.  Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.

[63]  Bocheng Bao,et al.  Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .

[64]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[65]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[66]  Foss,et al.  Multistability and delayed recurrent loops. , 1996, Physical review letters.

[67]  Xinghuo Yu,et al.  Design and Implementation of Grid Multiwing Butterfly Chaotic Attractors From a Piecewise Lorenz System , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[68]  J. Gunawardena,et al.  Unlimited multistability in multisite phosphorylation systems , 2009, Nature.

[69]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[70]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[71]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[72]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[73]  Remzi Tuntas,et al.  A new intelligent hardware implementation based on field programmable gate array for chaotic systems , 2015, Appl. Soft Comput..

[74]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .